498 research outputs found

    Macroscopic coherence effects in a mesoscopic system: Weak localization of thin silver films in an undergraduate lab

    Get PDF
    We present an undergraduate lab that investigates weak localization in thin silver films. The films prepared in our lab have thickness, aa, between 60-200 \AA, a mesoscopic length scale. At low temperatures, the inelastic dephasing length for electrons, LϕL_{\phi}, exceeds the thickness of the film (Lϕ≫aL_{\phi} \gg a), and the films are then quasi-2D in nature. In this situation, theory predicts specific corrections to the Drude conductivity due to coherent interference between conducting electrons' wavefunctions, a macroscopically observable effect known as weak localization. This correction can be destroyed with the application of a magnetic field, and the resulting magnetoresistance curve provides information about electron transport in the film. This lab is suitable for Junior or Senior level students in an advanced undergraduate lab course.Comment: 16 pages, 9 figures. Replaces earlier version of paper rejected by Am. J. Phys. because of too much content on vacuum systems. New version deals with the undergraduate experiment on weak localization onl

    Noise Thermal Impedance of a Diffusive Wire

    Full text link
    The current noise density S of a conductor in equilibrium, the Johnson noise, is determined by its temperature T: S=4kTG with G the conductance. The sample's noise temperature Tn=S/(4kG) generalizes T for a system out of equilibrium. We introduce the "noise thermal impedance" of a sample as the amplitude of the oscillation of Tn when heated by an oscillating power. For a macroscopic sample, it is the usual thermal impedance. We show for a diffusive wire how this (complex) frequency-dependent quantity gives access to the electron-phonon interaction time in a long wire and to the diffusion time in a shorter one, and how its real part may also give access to the electron-electron inelastic time. These times are not simply accessible from the frequency dependence of S itself.Comment: 4 pages, 2 figure

    Full characterization and analysis of a terahertz heterodyne receiver based on a NbN hot electron bolometer

    Get PDF
    We present a complete experimental characterization of a quasioptical twin-slot antenna coupled small area (1.0×0.15 µm^2) NbN hot electron bolometer (HEB) mixer compatible with currently available solid state tunable local oscillator (LO) sources. The required LO power absorbed in the HEB is analyzed in detail and equals only 25 nW. Due to the small HEB volume and wide antenna bandwidth, an unwanted direct detection effect is observed which decreases the apparent sensitivity. Correcting for this effect results in a receiver noise temperature of 700 K at 1.46 THz. The intermediate frequency (IF) gain bandwidth is 2.3 GHz and the IF noise bandwidth is 4 GHz. The single channel receiver stability is limited to 0.2–0.3 s in a 50 MHz bandwidth

    Geometry-induced reduction of the critical current in superconducting nanowires

    Full text link
    Reduction of the critical current in narrow superconducting NbN lines with sharp and rounded bends with respect to the critical current in straight lines was studied at different temperatures. We compare our experimental results with the reduction expected in the framework of the London model and the Ginsburg-Landau model. We have experimentally found that the reduction is significantly less than either model predicts. We also show that in our NbN lines the bends mostly contribute to the reduction of the critical current at temperatures well below the superconducting transition temperature

    Magnetic anisotropy in strained manganite films and bicrystal junctions

    Get PDF
    Transport and magnetic properties of LSMO manganite thin films and bicrystal junctions were investigated. Manganite films were epitaxially grown on STO, LAO, NGO and LSAT substrates and their magnetic anisotropy were determined by two techniques of magnetic resonance spectroscopy. Compare with cubic substrates a small (about 0.3 persentage), the anisotropy of the orthorhombic NGO substrate leads to a uniaxial anisotropy of the magnetic properties of the films in the plane of the substrate. Samples with different tilt of crystallographic basal planes of manganite as well as bicrystal junctions with rotation of the crystallographic axes (RB - junction) and with tilting of basal planes (TB - junction) were investigated. It was found that on vicinal NGO substrates the value of magnetic anisotropy could be varied by changing the substrate inclination angle from 0 to 25 degrees. Measurement of magnetic anisotropy of manganite bicrystal junction demonstrated the presence of two ferromagnetically ordered spin subsystems for both types of bicrystal boundaries RB and TB. The magnitude of the magnetoresistance for TB - junctions increased with decreasing temperature and with the misorientation angle even misorientation of easy axes in the parts of junction does not change. Analysis of the voltage dependencies of bicrystal junction conductivity show that the low value of the magnetoresistance for the LSMO bicrystal junctions can be caused by two scattering mechanisms with the spin- flip of spin - polarized carriers due to the strong electron - electron interactions in a disordered layer at the bicrystal boundary at low temperatures and the spin-flip by anti ferromagnetic magnons at high temperatures.Comment: 26 pages, 10 figure

    Effect of drought and methyl jasmonate treatment on primary and secondary isoprenoid metabolites derived from the MEP pathway in the white spruce Picea glauca

    Get PDF
    White spruce ( Picea glauca ) emits monoterpenes that function as defensive signals and weapons after herbivore attack. We assessed the effects of drought and methyl jasmonate (MeJA) treatment, used as a proxy for herbivory, on monoterpenes and other isoprenoids in P. glauca . The emission of monoterpenes was significantly increased after MeJA treatment compared to the control, but drought suppressed the MeJA-induced increase. The composition of the emitted blend was altered strongly by stress, with drought increasing the proportion of oxygenated compounds and MeJA increasing the proportion of induced compounds such as linalool and ( E )-β-ocimene. In contrast, no treatment had any significant effect on the levels of stored monoterpenes and diterpenes. Among other MEP pathway-derived isoprenoids, MeJA treatment decreased chlorophyll levels by 40%, but had no effect on carotenoids, while drought stress had no impact on either of these pigment classes. Of the three described spruce genes encoding 1-deoxy-D-xylulose-5-phosphate synthase (DXS) catalyzing the first step of the MEP pathway, the expression of only one, DXS2B , was affected by our treatments, being increased by MeJA and decreased by drought. These findings show the sensitivity of monoterpene emission to biotic and abiotic stress regimes, and the mediation of the response by DXS genes

    Reset dynamics and latching in niobium superconducting nanowire single-photon detectors

    Get PDF
    We study the reset dynamics of niobium (Nb) superconducting nanowire single-photon detectors (SNSPDs) using experimental measurements and numerical simulations. The numerical simulations of the detection dynamics agree well with experimental measurements, using independently determined parameters in the simulations. We find that if the photon-induced hotspot cools too slowly, the device will latch into a dc resistive state. To avoid latching, the time for the hotspot to cool must be short compared to the inductive time constant that governs the resetting of the current in the device after hotspot formation. From simulations of the energy relaxation process, we find that the hotspot cooling time is determined primarily by the temperature-dependent electron-phonon inelastic time. Latching prevents reset and precludes subsequent photon detection. Fast resetting to the superconducting state is therefore essential, and we demonstrate experimentally how this is achieved

    Seasonal and herbivore-induced dynamics of foliar glucosinolates in wild cabbage (Brassica oleracea)

    Get PDF
    Levels of plant secondary metabolites are not static and often change in relation to plant ontogeny. They also respond to abiotic and biotic changes in the environment, e.g., they often increase in response to biotic stress, such as herbivory. In contrast with short-lived annual plant species, especially those with growing periods of less than 2–3 months, investment in defensive compounds of vegetative tissues in biennial and perennial species may also vary over the course of an entire growing season. In garden experiments, we investigated the dynamics of secondary metabolites, i.e. glucosinolates (GSLs) in the perennial wild cabbage (Brassica oleracea), which was grown from seeds originating from three populations that differ in GSL chemistry. We compared temporal long-term dynamics of GSLs over the course of two growing seasons and short-term dynamics in response to herbivory by Pieris rapae caterpillars in a more controlled greenhouse experiment. Long-term dynamics differed for aliphatic GSLs (gradual increase from May to December) and indole GSLs (rapid increase until mid-summer after which concentrations decreased or stabilized). In spring, GSL levels in new shoots were similar to those found in the previous year. Short-term dynamics in response to herbivory primarily affected indole GSLs, which increased during the 2-week feeding period by P. rapae. Herbivore-induced changes in the concentrations of aliphatic GSLs were population-specific and their concentrations were found to increase in primarily one population only. We discuss our results considering the biology and ecology of wild cabbage

    An All-Cryogenic THz Transmission Spectrometer

    Get PDF
    This paper describes a THz transmission spectrometer for the spectral range of 2-65 cm^-1 (100 GHz to 2 THz) with a spectral resolution of at least 1.8 cm^-1 (50 GHz) where the source, sample, and detector are all fully contained in a cryogenic environment. Cyclotron emission from a two-dimensional electron gas heated with an electrical current serves as a magnetic field tunable source. The spectrometer is demonstrated at 4.2 K by measuring the resonant cyclotron absorption of a second two dimensional electron gas. Unique aspects of the spectrometer are that 1) an ultra-broadband detector is used and 2) the emitter is run quasi-continuously with a chopping frequency of only 1 Hz. Since optical coupling to room temperature components is not necessary, this technique is compatible with ultra-low temperature (sub 100 mK) operation.Comment: 7 pages, 5 figures. Author affiliation and funding acknowledgements clarifie

    Considerable enhancement of the critical current in a superconducting film by magnetized magnetic strip

    Full text link
    We show that a magnetic strip on top of a superconducting strip magnetized in a specified direction may considerably enhance the critical current in the sample. At fixed magnetization of the magnet we observed diode effect - the value of the critical current depends on the direction of the transport current. We explain these effects by a influence of the nonuniform magnetic field induced by the magnet on the current distribution in the superconducting strip. The experiment on a hybrid Nb/Co structure confirmed the predicted variation of the critical current with a changing value of magnetization and direction of the transport current.Comment: 6 pages, 7 figure
    • …
    corecore