7 research outputs found

    THE REACTIVITY OF PREHYDROLYZED SOFTWOOD KRAFT PULPS AFTER PROLONGED COOKING FOLLOWED BY CHLORITE DELIGNIFICATION

    Get PDF
    In a laboratory study high-quality spruce chips were prehydrolyzed to remove hemicelluloses and then kraft cooked to different kappa numbers by varying the cooking time. Each pulp sample was then chlorite delignified to selectively remove the remaining lignin. The reactivities of the pulp samples before and after chlorite delignification were determined by Fock’s test, which is supposed to measure the pulp’s reactivity in the conventional viscose process. A number of analyses were carried out to determine which parameters affected pulp reactivity, as, for example: intrinsic viscosity, kappa number, pulp yield, carbohydrate composition, levelling-off degree of polymerization (LODP), and alkali solubility. The results of the study showed that the pulp reactivity increased with decreasing kappa number, and the highest reactivity was obtained after total lignin removal using chlorite delignification. It was also found that the carbohydrate composition had no influence on the pulp reactivity, but lower intrinsic viscosity either obtained by prolonged cooking or chlorite delignification correlated with higher pulp reactivity. Finally, lower alkali solubility, i.e. higher R18, reduced the reactivity

    Cellulose dissolution in an alkali based solvent: influence of additives and pretreatments

    Get PDF
    The distinction between thermodynamic and kinetics in cellulose dissolution is seldom considered in the literature. Therefore, herein an attempt to discuss this topic and illustrate our hypotheses on the basis of simple experiments was made. It is well-known that cellulose can be dissolved in a aqueous sodium hydroxide (NaOH/H2O) solvent at low temperature but it is here shown that such an alkaline solvent can be considerably improved regarding solubility, stability and rheological properties as a whole if different additives (salts and amphiphilic molecules) are used in the dissolution stage. This work probes new aqueous routes to dissolve cellulose, thereby improving the potential to commercially dissolve cellulose in an inexpensive and environmentally friendly manner.A distinção entre termodinâmica e cinética de dissolução da celulose raramente tem sido considerada na literatura. Neste trabalho, discutimos este tema e fundamentamos as nossas hipóteses recorrendo a experiências simples. É do conhecimento geral que a celulose pode ser dissolvida no solvente aquoso de hidróxido de sódio (NaOH/H2O) a baixa temperatura. Neste trabalho, demonstramos que este solvente alcalino pode ser consideravelmente melhorado em relação à sua estabilidade, solubilidade e propriedades reológicas se forem usados diferentes aditivos (sais e moléculas anfifílicas) na fase de dissolução. Este trabalho indica novos caminhos relativamente à dissolução da celulose em solventes aquosos, de uma forma mais econômica e ambientalmente amigável, aumentando o seu potencial comercial

    SOME ASPECTS OF THE REACTIVITY OF PULP INTENDED FOR HIGH-VISCOSITY VISCOSE

    No full text
    The motivation for this study was to reduce the consumption of C2S when preparing high-viscosity viscose by pre-treating two softwood pulps with enzymes prior to the viscose stages. Reactivity was evaluated in two ways, Fock´s test of the pulp and the gamma number of the viscose solution prior to regeneration. Whilst the reactivity of a pulp that had been subjected to enzyme pretreatment increased according to Fock´s test, it did not increase according to the gamma number. This unexpected difference between the two reactivity tests was investigated. It was concluded that Fock´s test measures the extent to which C2S reacts with a pulp sample during a standardized test, whereas the gamma number measures the resulting degree of xanthate substitution on the cellulose backbone. The gamma number was judged to be the more relevant of the two tests, since it reflects the dissolution ability of a pulp in the viscose preparation. A higher gamma number also means that the coagulation time in the spinning process is prolonged; this is beneficial, as it can be used to increase the tenacity of the viscose fibres. Measuring the reactivity according to Fock´s test, on the contrary, provides more dubious results, as the test has no undisputed correlation to the viscose preparation process

    The Influence of Different Types of Bisulfite Cooking Liquors on Pine Wood Components

    No full text
    In this laboratory study, the initial phase of a single-stage sodium bisulfite cook was observed and analyzed. The experiments were carried out using either a lab- or a mill-prepared cooking acid, and the cooking temperature used in these experiments was 154 °C. Investigated parameters were the chemical consumption, the pH profile, and the pulp yield with respect to cellulose, lignin, glucomannan, xylan, and finally extractives. Cooking was extended down to approximately 60% pulp yield and the pulp composition during the cook, with respect to carbohydrates and lignin, was summarized in a kinetic model. The mill-prepared cooking acid had a higher COD (Chemical Oxygen Demand) and TOC (Total Organic Carbon) content than the lab-prepared cooking acid and this influenced the pH and the formation of thiosulfate during the cook. It was found that the presence of dissolved carbohydrates and lignin in the bisulfite cooking liquor affected the extractives removal and the thiosulfate formation

    Dissolution of dissolving pulp in alkaline solvents after steam explosion pretreatments

    No full text
    In this project different aqueous based solvent systems were investigated for the dissolution of steam exploded (STEX) dissolving pulps prior to a coagulation step for preparation of textile fibers. The pulp samples studied could, to a large degree, be dissolved in a NaOH/urea/thiourea system, but there are always residuals, irrespective of the conditions. The dissolution process appeared to be kinetically controlled, as prolonged retention time decreased the amount of residuals. A pre-cooled NaOH/urea/thiourea system, and a retention time of 60 h generated the lowest amount (6%) of residuals of the STEX pretreated dissolving pulp studied. Some fundamental results are described and a model for dissolution of dissolving pulp fibers is proposed

    A comparative study of enzymatic and Fenton pretreatment applied to a birch kraft pulp used for MFC production in a pilot scale high-pressure homogenizer

    No full text
    Microfibrillated cellulose (MFC) was produced in pilot scale from a bleached birch (Betula verrucosa) kraft pulp that was pretreated with either Fenton's reagent or with a combined mechanical and enzymatic method used at the Centre Technique du Papier (CTP; Grenoble, France). The change in fiber fibrillation during the homogenization treatment was monitored by analyzing the fiber and the fines content, size fractionation, rheological properties and visualization by light-and scanning electron microscopy (SEM). The Fenton pretreatment resulted in MFC suspensions that contained a high amount of small sized elements. After five passes through the high-pressure homogenizer, the amount of particles smaller than 20 mu m was 37% for the Fenton pretreated MFC compared to 13% for the enzymatically (endoglucanase) pretreated MFC. Altogether, the Fenton pretreatment enabled preparation of MFC with a higher degree of fibrillation after the same number of passes through the high-pressure homogenizer. Another option is to produce MFC of the same amount of fibrillation as after an enzymatic stage, but at significantly lower energy consumption

    A comparative study of enzymatic and Fenton pretreatment applied to a birch kraft pulp used for MFC production in a pilot scale high-pressure homogenizer

    No full text
    Microfibrillated cellulose (MFC) was produced in pilot scale from a bleached birch (Betula verrucosa) kraft pulp that was pretreated with either Fenton's reagent or with a combined mechanical and enzymatic method used at the Centre Technique du Papier (CTP; Grenoble, France). The change in fiber fibrillation during the homogenization treatment was monitored by analyzing the fiber and the fines content, size fractionation, rheological properties and visualization by light-and scanning electron microscopy (SEM). The Fenton pretreatment resulted in MFC suspensions that contained a high amount of small sized elements. After five passes through the high-pressure homogenizer, the amount of particles smaller than 20 mu m was 37% for the Fenton pretreated MFC compared to 13% for the enzymatically (endoglucanase) pretreated MFC. Altogether, the Fenton pretreatment enabled preparation of MFC with a higher degree of fibrillation after the same number of passes through the high-pressure homogenizer. Another option is to produce MFC of the same amount of fibrillation as after an enzymatic stage, but at significantly lower energy consumption
    corecore