230 research outputs found

    Controlling the Local Spin-Polarization at the Organic-Ferromagnetic Interface

    Get PDF
    By means of ab initio calculations and spin-polarized scanning tunneling microscopy experiments we show how to manipulate the local spin-polarization of a ferromagnetic surface by creating a complex energy dependent magnetic structure. We demonstrate this novel effect by adsorbing organic molecules containing pi(pz)-electrons onto a ferromagnetic surface, in which the hybridization of the out-of-plane pz atomic type orbitals with the d-states of the metal leads to the inversion of the spin-polarization at the organic site due to a pz - d Zener exchange type mechanism. As a key result, we demonstrate that it is possible to selectively inject spin-up and spin-down electrons from the same ferromagnetic surface, an effect which can be exploited in future spintronic devices

    Generalized polarizabilities and the chiral structure of the nucleon

    Get PDF
    We discuss the virtual Compton scattering reaction e−p→e−pγe^-p\to e^-p\gamma at low energies. We present results for the generalized polarizabilities of the nucleon obtained in heavy baryon chiral perturbation theory at O(p3)O(p^3).Comment: 5 pages, LaTex file, 1 postscript figure, uses ``espcrc1.sty'', talk given by S. Scherer at the 15th International Conference on Few Body Problems in Physics, Groningen, The Netherlands, 22-26 July 1997, to appear in the proceedings (Nucl. Phys. A

    Virtual Compton Scattering off the Nucleon in Chiral Perturbation Theory

    Get PDF
    We investigate the spin-independent part of the virtual Compton scattering (VCS) amplitude off the nucleon within the framework of chiral perturbation theory. We perform a consistent calculation to third order in external momenta according to Weinberg's power counting. With this calculation we can determine the second- and fourth-order structure-dependent coefficients of the general low-energy expansion of the spin-averaged VCS amplitude based on gauge invariance, crossing symmetry and the discrete symmetries. We discuss the kinematical regime to which our calculation can be applied and compare our expansion with the multipole expansion by Guichon, Liu and Thomas. We establish the connection of our calculation with the generalized polarizabilities of the nucleon where it is possible.Comment: 26 pages, 2 Postscript figures, RevTex using epsfi

    Compton Scattering and the Spin Structure of the Nucleon at Low Energies

    Get PDF
    We analyze polarized Compton scattering which provides information on the spin-structure of the nucleon. For scattering processes with photon energies up to 100 MeV the spin-structure dependence can be encoded into four independent parameters-the so-called spin-polarizabilities γi,i=1...4\gamma_i, i=1...4 of the nucleon, which we calculate within the framework of the "small scale expansion" in SU(2) baryon chiral perturbation theory. Specific application is made to "forward" and "backward" spin- polarizabilities.Comment: 8 pages revtex file, separation between pion-pole and regular contributions detailed + minor wording changes, results and conclusions unchange

    Generalized Polarizabilities of the Nucleon in Chiral Effective Theories

    Get PDF
    Using the techniques of chiral effective field theories we evaluate the so called generalized polarizabilities of the nucleon, which characterize the structure dependent components in virtual Compton scattering (VCS) as probed in the electron scattering reaction e N \to e' N gamma. Results are given for both spin-dependent and spin-independent structure effects to O(p^3) in SU(2) Heavy Baryon Chiral Perturbation Theory and to O(epsilon^3) in the SU(2) Small Scale Expansion. Finally we compare our calculations with results from the pioneering VCS experiment on the proton from Mainz.Comment: 39 pages, 12 figures, revte

    Interleukin-12 and -23 Control Plasticity of CD127+ Group 1 and Group 3 Innate Lymphoid Cells in the Intestinal Lamina Propria

    Get PDF
    SummaryHuman group 1 ILCs consist of at least three phenotypically distinct subsets, including NK cells, CD127+ ILC1, and intraepithelial CD103+ ILC1. In inflamed intestinal tissues from Crohn’s disease patients, numbers of CD127+ ILC1 increased at the cost of ILC3. Here we found that differentiation of ILC3 to CD127+ ILC1 is reversible in vitro and in vivo. CD127+ ILC1 differentiated to ILC3 in the presence of interleukin-2 (IL-2), IL-23, and IL-1β dependent on the transcription factor RORγt, and this process was enhanced in the presence of retinoic acid. Furthermore, we observed in resection specimen from Crohn’s disease patients a higher proportion of CD14+ dendritic cells (DC), which in vitro promoted polarization from ILC3 to CD127+ ILC1. In contrast, CD14− DCs promoted differentiation from CD127+ ILC1 toward ILC3. These observations suggest that environmental cues determine the composition, function, and phenotype of CD127+ ILC1 and ILC3 in the gut

    The record large 2006 Antarctic ozone hole

    Get PDF
    Póster presentado en: EGU General Assembly 2007 celebrada del 15 al 20 de abril en Viena, Austria.The Antarctic ozone hole of 2006 was unusually large. Several parameters used to measure the extent of ozone destruction and ozone hole severity set new records in 2006. Several ground-based stations measured record low total ozone column amounts. Ozonesonde measurements also revealed in many cases record low values of ozone in certain height intervals. The dynamics of the 2006 ozone hole will be described together with satellite-based measurements and calculations of ozone hole area and mass deficit. These finding will be supplemented with several examples of data from various stations in Antarctica

    The success of the Montreal Protocol in mitigating interactive effects of stratospheric ozone depletion and climate change on the environment

    Get PDF
    The Montreal Protocol and its Amendments have been highly effective in protecting the stratospheric ozone layer, preventing global increases in solar ultraviolet-B radiation (UV-B; 280-315 nm) at Earth's surface, and reducing global warming. While ongoing and projected changes in UV-B radiation and climate still pose a threat to human health, food security, air and water quality, terrestrial and aquatic ecosystems, and construction materials and fabrics, the Montreal Protocol continues to play a critical role in protecting Earth's inhabitants and ecosystems by addressing many of the United Nations Sustainable Development Goals.Non peer reviewe

    United Nations Environment Programme (UNEP), Questions and Answers about the Effects of Ozone Depletion, UV Radiation, and Climate on Humans and the Environment. Supplement of the 2022 Assessment Report of the UNEP Environmental Effects Assessment Panel

    Get PDF
    This collection of Questions & Answers (Q&As) was prepared by the Environmental Effects Assessment Panel (EEAP) of the Montreal Protocol under the umbrella of the United Nations Environment Programme (UNEP). The document complements EEAP’s Quadrennial Assessment 2022 (https://ozone. unep.org/science/assessment/eeap) and provides interesting and useful information for policymakers, the general public, teachers, and scientists, written in an easy-to-understand language
    • …
    corecore