11 research outputs found

    Elaboration of phosphocalcic ceramics for bone tissue engineering : influence of physico-chemical properties of materials on the biological behavior in vitro

    No full text
    Cette thĂšse transdisciplinaire rĂ©alisĂ©e en collaboration avec le laboratoire SPCTS (Sciences des ProcĂ©dĂ©s CĂ©ramiques et Traitement de Surface) et l’EA 3842 (HomĂ©ostasie cellulaire et pathologies) de l’universitĂ© de Limoges est un projet de recherche Ă  l’interface entre la biologie et la chimie et a Ă©tĂ© consacrĂ©e Ă  l’étude de l’influence des propriĂ©tĂ©s physico-chimiques de biocĂ©ramiques de phosphate de calcium sur leur comportement biologique in vitro.L’exploration des processus d’interaction entre matĂ©riaux et cellules reste une problĂ©matique scientifique de premier plan tant d’un point de vue fondamental qu’appliquĂ© pour la mise au point de biomatĂ©riaux performants. L’objectif final est d’optimiser l’efficacitĂ© thĂ©rapeutique des cĂ©ramiques phosphocalciques comme matĂ©riaux de substitution pour la rĂ©gĂ©nĂ©ration osseuse. La premiĂšre partie de la thĂšse est une revue bibliographique gĂ©nĂ©rale prĂ©sentant la problĂ©matique actuelle abordĂ©e en lien avec les besoins cliniques et les limitations des Ă©tudes actuelles. Les connaissances sur la biologie du tissu osseux sain ainsi que les aspects de rĂ©gulation du processus de remodelage osseux ont Ă©galement Ă©tĂ© abordĂ©s dans ce chapitre. Ce chapitre se termine par une synthĂšse bibliographique sur les biomatĂ©riaux et la rĂ©gĂ©nĂ©ration osseuse. Le chapitre 2 est relatif Ă  la synthĂšse puis Ă  la caractĂ©risation physico-chimique des matĂ©riaux cĂ©ramiques. Des cĂ©ramiques de trois compositions chimiques : HA (hydroxyapatite : Ca10(PO4)6(OH)2 , SiHA (hydroxyapatite silicatĂ©e : Ca10(PO4)5,6(SiO4)0,42(OH)1,6 et CHA (hydroxyapatite carbonatĂ©e : Ca9,5(PO4)5,5(CO3)0,48(OH)1,08(CO3)0,23 , chacune avec deux microstructures diffĂ©rentes : dense ou poreuse, ont Ă©tĂ© Ă©laborĂ©es et rigoureusement caractĂ©risĂ©es (porositĂ©, topographie de surface, mouillabilitĂ©, potentiel zĂȘta, taille des grains, distribution et taille des pores, surface spĂ©cifique). Le chapitre 3 dĂ©crit l’approche expĂ©rimentale employĂ©e pour l’évaluation biologique des interactions matĂ©riaux/cellules explorĂ©es dans ce travail. Les analyses biologiques ont Ă©tĂ© rĂ©alisĂ©es avec deux lignĂ©es cellulaires diffĂ©rentes. La lignĂ©e cellulaire prĂ©-ostĂ©oblastique MC3T3-E1 et la lignĂ©e cellulaire de monocytes/macrophages, prĂ©curseurs des ostĂ©oclastes RAW 264.7, (trĂšs importantes pour les aspects osseux, mais moins souvent explorĂ©es que les lignĂ©es ostĂ©oblastiques dans la littĂ©rature). Enfin, le chapitre 4 reporte et commente les rĂ©sultats biologiques obtenus dans ce travail. Tous les biomatĂ©riaux Ă©valuĂ©s dans cette Ă©tude sont biocompatibles, nĂ©anmoins, le biomatĂ©riau poreux CHA s’est avĂ©rĂ© le plus prometteur des six variantes de biomatĂ©riaux testĂ©s.This transdisciplinary thesis, carried out in collaboration with the SPCTS laboratory (sciences of ceramic processes and surface treatment) and EA 3842 (Cellular homoeostasis and pathologies) of the University of Limoges, is a research project at the interface between biology and chemistry and was devoted to the study of the influence of the physico-chemical properties of calcium phosphate bioceramics on their biological behavior in vitro.The exploration of the processes of interaction between materials and cells remains a major scientific issue, both from a fundamental and applied point of view for the development of highperformance biomaterials. The ultimate objective is to optimize the therapeutic efficiency of phosphocalcic ceramics as substitute materials for bone regeneration.The first part of the thesis is a general bibliographic review presenting the current issues tackled with the clinical needs and limitations of current studies. Knowledge of the biology of healthy bone tissue as well as the regulatory aspects of the bone remodeling process was also discussed in this chapter. It includes also a bibliographic overview of biomaterials and bone regeneration.Chapter 2 relates to the synthesis and the physico-chemical characterization of ceramic materials. HA (hydroxyapatite: Ca10 (PO4) 6 (OH) 2, SiHA (silicated hydroxyapatite: Ca10 (PO4) 5.6 (SiO4) 0.42 (OH) 1.6 and CHA (carbonated hydroxyapatite: Ca9.5 (PO4) 5.5 (CO3) 0.48 (OH) 1.08 (CO3) 0.23, ceramics each with two different microstructures : dense or porous, have been elaborated and thoroughly characterized (porosity, surface topography, wettability, zeta potential, grain size, pore size and distribution, specific surface area). Chapter 3 describes the experimental approach used for the biological evaluation of the interactions between materials and cells. Biological analyzes were performed with two different cell lines. The pre-osteoblastic MC3T3-E1 cell line and the RAW 264.7cell line of monocytes / macrophages, precursors of the steoclasts, (very important for the bone aspects, but less often explored than the osteoblastic lines in the literature). Finally, Chapter 4 reports and comments on the biological results obtained in this work. All biomaterials evaluated are biocompatible, nevertheless, the porous CHA biomaterial was the most promising of the six variants of biomaterials tested

    Elaboration de cĂ©ramiques phosphocalciques pour l'ingĂ©nierie tissulaire osseuse : Ă©tude de l’influence des propriĂ©tĂ©s physico-chimiques des matĂ©riaux sur le comportement biologique in vitro

    No full text
    This transdisciplinary thesis, carried out in collaboration with the SPCTS laboratory (sciences of ceramic processes and surface treatment) and EA 3842 (Cellular homoeostasis and pathologies) of the University of Limoges, is a research project at the interface between biology and chemistry and was devoted to the study of the influence of the physico-chemical properties of calcium phosphate bioceramics on their biological behavior in vitro.The exploration of the processes of interaction between materials and cells remains a major scientific issue, both from a fundamental and applied point of view for the development of highperformance biomaterials. The ultimate objective is to optimize the therapeutic efficiency of phosphocalcic ceramics as substitute materials for bone regeneration.The first part of the thesis is a general bibliographic review presenting the current issues tackled with the clinical needs and limitations of current studies. Knowledge of the biology of healthy bone tissue as well as the regulatory aspects of the bone remodeling process was also discussed in this chapter. It includes also a bibliographic overview of biomaterials and bone regeneration.Chapter 2 relates to the synthesis and the physico-chemical characterization of ceramic materials. HA (hydroxyapatite: Ca10 (PO4) 6 (OH) 2, SiHA (silicated hydroxyapatite: Ca10 (PO4) 5.6 (SiO4) 0.42 (OH) 1.6 and CHA (carbonated hydroxyapatite: Ca9.5 (PO4) 5.5 (CO3) 0.48 (OH) 1.08 (CO3) 0.23, ceramics each with two different microstructures : dense or porous, have been elaborated and thoroughly characterized (porosity, surface topography, wettability, zeta potential, grain size, pore size and distribution, specific surface area). Chapter 3 describes the experimental approach used for the biological evaluation of the interactions between materials and cells. Biological analyzes were performed with two different cell lines. The pre-osteoblastic MC3T3-E1 cell line and the RAW 264.7cell line of monocytes / macrophages, precursors of the steoclasts, (very important for the bone aspects, but less often explored than the osteoblastic lines in the literature). Finally, Chapter 4 reports and comments on the biological results obtained in this work. All biomaterials evaluated are biocompatible, nevertheless, the porous CHA biomaterial was the most promising of the six variants of biomaterials tested.Cette thĂšse transdisciplinaire rĂ©alisĂ©e en collaboration avec le laboratoire SPCTS (Sciences des ProcĂ©dĂ©s CĂ©ramiques et Traitement de Surface) et l’EA 3842 (HomĂ©ostasie cellulaire et pathologies) de l’universitĂ© de Limoges est un projet de recherche Ă  l’interface entre la biologie et la chimie et a Ă©tĂ© consacrĂ©e Ă  l’étude de l’influence des propriĂ©tĂ©s physico-chimiques de biocĂ©ramiques de phosphate de calcium sur leur comportement biologique in vitro.L’exploration des processus d’interaction entre matĂ©riaux et cellules reste une problĂ©matique scientifique de premier plan tant d’un point de vue fondamental qu’appliquĂ© pour la mise au point de biomatĂ©riaux performants. L’objectif final est d’optimiser l’efficacitĂ© thĂ©rapeutique des cĂ©ramiques phosphocalciques comme matĂ©riaux de substitution pour la rĂ©gĂ©nĂ©ration osseuse. La premiĂšre partie de la thĂšse est une revue bibliographique gĂ©nĂ©rale prĂ©sentant la problĂ©matique actuelle abordĂ©e en lien avec les besoins cliniques et les limitations des Ă©tudes actuelles. Les connaissances sur la biologie du tissu osseux sain ainsi que les aspects de rĂ©gulation du processus de remodelage osseux ont Ă©galement Ă©tĂ© abordĂ©s dans ce chapitre. Ce chapitre se termine par une synthĂšse bibliographique sur les biomatĂ©riaux et la rĂ©gĂ©nĂ©ration osseuse. Le chapitre 2 est relatif Ă  la synthĂšse puis Ă  la caractĂ©risation physico-chimique des matĂ©riaux cĂ©ramiques. Des cĂ©ramiques de trois compositions chimiques : HA (hydroxyapatite : Ca10(PO4)6(OH)2 , SiHA (hydroxyapatite silicatĂ©e : Ca10(PO4)5,6(SiO4)0,42(OH)1,6 et CHA (hydroxyapatite carbonatĂ©e : Ca9,5(PO4)5,5(CO3)0,48(OH)1,08(CO3)0,23 , chacune avec deux microstructures diffĂ©rentes : dense ou poreuse, ont Ă©tĂ© Ă©laborĂ©es et rigoureusement caractĂ©risĂ©es (porositĂ©, topographie de surface, mouillabilitĂ©, potentiel zĂȘta, taille des grains, distribution et taille des pores, surface spĂ©cifique). Le chapitre 3 dĂ©crit l’approche expĂ©rimentale employĂ©e pour l’évaluation biologique des interactions matĂ©riaux/cellules explorĂ©es dans ce travail. Les analyses biologiques ont Ă©tĂ© rĂ©alisĂ©es avec deux lignĂ©es cellulaires diffĂ©rentes. La lignĂ©e cellulaire prĂ©-ostĂ©oblastique MC3T3-E1 et la lignĂ©e cellulaire de monocytes/macrophages, prĂ©curseurs des ostĂ©oclastes RAW 264.7, (trĂšs importantes pour les aspects osseux, mais moins souvent explorĂ©es que les lignĂ©es ostĂ©oblastiques dans la littĂ©rature). Enfin, le chapitre 4 reporte et commente les rĂ©sultats biologiques obtenus dans ce travail. Tous les biomatĂ©riaux Ă©valuĂ©s dans cette Ă©tude sont biocompatibles, nĂ©anmoins, le biomatĂ©riau poreux CHA s’est avĂ©rĂ© le plus prometteur des six variantes de biomatĂ©riaux testĂ©s

    Epac contributes to cardiac hypertrophy and amyloidosis induced by radiotherapy but not fibrosis.

    No full text
    BACKGROUND: Cardiac toxicity is a side-effect of anti-cancer treatment including radiotherapy and this translational study was initiated to characterize radiation-induced cardiac side effects in a population of breast cancer patients and in experimental models in order to identify novel therapeutic target. METHODS: The size of the heart was evaluated in CO-HO-RT patients by measuring the Cardiac-Contact-Distance before and after radiotherapy (48months of follow-up). In parallel, fibrogenic signals were studied in a severe case of human radiation-induced pericarditis. Lastly, radiation-induced cardiac damage was studied in mice and in rat neonatal cardiac cardiomyocytes. RESULTS: In patients, time dependent enhancement of the CCD was measured suggesting occurrence of cardiac hypertrophy. In the case of human radiation-induced pericarditis, we measured the activation of fibrogenic (CTGF, RhoA) and remodeling (MMP2) signals. In irradiated mice, we documented decreased contractile function, enlargement of the ventricular cavity and long-term modification of the time constant of decay of Ca(2+) transients. Both hypertrophy and amyloid deposition were correlated with the induction of Epac-1; whereas radiation-induced fibrosis correlated with Rho/CTGF activation. Transactivation studies support Epac contribution in hypertrophy stimulation and showed that radiotherapy and Epac displayed specific and synergistic signals. CONCLUSION: Epac-1 has been identified as a novel regulator of radiation-induced hypertrophy and amyloidosis but not fibrosis in the heart
    corecore