690 research outputs found

    Non-Destructive Identification of Cold and Extremely Localized Single Molecular Ions

    Full text link
    A simple and non-destructive method for identification of a single molecular ion sympathetically cooled by a single laser cooled atomic ion in a linear Paul trap is demonstrated. The technique is based on a precise determination of the molecular ion mass through a measurement of the eigenfrequency of a common motional mode of the two ions. The demonstrated mass resolution is sufficiently high that a particular molecular ion species can be distinguished from other equally charged atomic or molecular ions having the same total number of nucleons

    Blackbody-radiation-assisted molecular laser cooling

    Full text link
    The translational motion of molecular ions can be effectively cooled sympathetically to temperatures below 100 mK in ion traps through Coulomb interactions with laser-cooled atomic ions. The distribution of internal rovibrational states, however, gets in thermal equilibrium with the typically much higher temperature of the environment within tens of seconds. We consider a concept for rotational cooling of such internally hot, but translationally cold heteronuclear diatomic molecular ions. The scheme relies on a combination of optical pumping from a few specific rotational levels into a ``dark state'' with redistribution of rotational populations mediated by blackbody radiation.Comment: 4 pages, 5 figure

    Colloquium: Quantum interference of clusters and molecules

    Full text link
    We review recent progress and future prospects of matter wave interferometry with complex organic molecules and inorganic clusters. Three variants of a near-field interference effect, based on diffraction by material nanostructures, at optical phase gratings, and at ionizing laser fields are considered. We discuss the theoretical concepts underlying these experiments and the experimental challenges. This includes optimizing interferometer designs as well as understanding the role of decoherence. The high sensitivity of matter wave interference experiments to external perturbations is demonstrated to be useful for accurately measuring internal properties of delocalized nanoparticles. We conclude by investigating the prospects for probing the quantum superposition principle in the limit of high particle mass and complexity.Comment: 19 pages, 13 figures; v2: corresponds to published versio

    Falsification Of The Atmospheric CO2 Greenhouse Effects Within The Frame Of Physics

    Full text link
    The atmospheric greenhouse effect, an idea that many authors trace back to the traditional works of Fourier (1824), Tyndall (1861), and Arrhenius (1896), and which is still supported in global climatology, essentially describes a fictitious mechanism, in which a planetary atmosphere acts as a heat pump driven by an environment that is radiatively interacting with but radiatively equilibrated to the atmospheric system. According to the second law of thermodynamics such a planetary machine can never exist. Nevertheless, in almost all texts of global climatology and in a widespread secondary literature it is taken for granted that such mechanism is real and stands on a firm scientific foundation. In this paper the popular conjecture is analyzed and the underlying physical principles are clarified. By showing that (a) there are no common physical laws between the warming phenomenon in glass houses and the fictitious atmospheric greenhouse effects, (b) there are no calculations to determine an average surface temperature of a planet, (c) the frequently mentioned difference of 33 degrees Celsius is a meaningless number calculated wrongly, (d) the formulas of cavity radiation are used inappropriately, (e) the assumption of a radiative balance is unphysical, (f) thermal conductivity and friction must not be set to zero, the atmospheric greenhouse conjecture is falsified.Comment: 115 pages, 32 figures, 13 tables (some typos corrected

    Membrane shape as a reporter for applied forces

    Get PDF
    Recent advances have enabled 3-dimensional reconstructions of biological structures in vivo, ranging in size and complexity from single proteins to multicellular structures. In particular, tomography and confocal microscopy have been exploited to capture detailed 3-dimensional conformations of membranes in cellular processes ranging from viral budding and organelle maintenance to phagocytosis. Despite the wealth of membrane structures available, there is as yet no generic, quantitative method for their interpretation. We propose that by modeling these observed biomembrane shapes as fluid lipid bilayers in mechanical equilibrium, the externally applied forces as well as the pressure, tension, and spontaneous curvature can be computed directly from the shape alone. To illustrate the potential power of this technique, we apply an axial force with optical tweezers to vesicles and explicitly demonstrate that the applied force is equal to the force computed from the membrane conformation

    Modes of Oscillation in Radiofrequency Paul Traps

    Full text link
    We examine the time-dependent dynamics of ion crystals in radiofrequency traps. The problem of stable trapping of general three-dimensional crystals is considered and the validity of the pseudopotential approximation is discussed. We derive analytically the micromotion amplitude of the ions, rigorously proving well-known experimental observations. We use a method of infinite determinants to find the modes which diagonalize the linearized time-dependent dynamical problem. This allows obtaining explicitly the ('Floquet-Lyapunov') transformation to coordinates of decoupled linear oscillators. We demonstrate the utility of the method by analyzing the modes of a small `peculiar' crystal in a linear Paul trap. The calculations can be readily generalized to multispecies ion crystals in general multipole traps, and time-dependent quantum wavefunctions of ion oscillations in such traps can be obtained.Comment: 24 pages, 3 figures, v2 adds citations and small correction

    Structural morphology of Al-Mg-Si alloy friction stir welds through tool eccentricity

    Get PDF
    In this work, the microstructure development in the stir zone of Al-Mg-Si alloy is evaluated while employing tool eccentricity during friction stir welding. Low dislocation density with dispersoids were observed in the inner band region of the stir zone produced with aligned tooling. On the other hand, a high dislocation density with Mg2Si precipitates can be observed in the same region of the stir zone when a tool eccentricity of 0.2 mm was utilized. The discrepancy is attributed to the enhanced shearing activity imposed on the material during the welding process

    The effect of spontaneous collapses on neutrino oscillations

    Full text link
    We compute the effect of collapse models on neutrino oscillations. The effect of the collapse is to modify the evolution of the `spatial' part of the wave function, which indirectly amounts to a change on the flavor components. In many respects, this phenomenon is similar to neutrino propagation through matter. For the analysis we use the mass proportional CSL model, and perform the calculation to second order perturbation theory. As we will show, the CSL prediction is very small - mainly due to the very small mass of neutrinos - and practically undetectable.Comment: 24 pages, RevTeX. Updated versio

    Esperanto for histones : CENP-A, not CenH3, is the centromeric histone H3 variant

    Get PDF
    The first centromeric protein identified in any species was CENP-A, a divergent member of the histone H3 family that was recognised by autoantibodies from patients with scleroderma-spectrum disease. It has recently been suggested to rename this protein CenH3. Here, we argue that the original name should be maintained both because it is the basis of a long established nomenclature for centromere proteins and because it avoids confusion due to the presence of canonical histone H3 at centromeres

    DNA content of a functioning chicken kinetochore

    Get PDF
    © The Author(s) 2014. In order to understand the three-dimensional structure of the functional kinetochore in vertebrates, we require a complete list and stoichiometry for the protein components of the kinetochore, which can be provided by genetic and proteomic experiments. We also need to know how the chromatin-containing CENP-A, which makes up the structural foundation for the kinetochore, is folded, and how much of that DNA is involved in assembling the kinetochore. In this MS, we demonstrate that functioning metaphase kinetochores in chicken DT40 cells contain roughly 50 kb of DNA, an amount that corresponds extremely closely to the length of chromosomal DNA associated with CENP-A in ChIP-seq experiments. Thus, during kinetochore assembly, CENP-A chromatin is compacted into the inner kinetochore plate without including significant amounts of flanking pericentromeric heterochromatin. © 2014 The Author(s).Wellcome Trust [grant number 073915]; Wellcome Trust Centre for Cell Biology (core grant numbers 077707 and 092076); Darwin Trust of Edinburg
    • …
    corecore