158 research outputs found

    The anti-slavery series: perspectives on the past and present

    Get PDF
    Ethan Geringer-Sameth is a graduate of the M.Sc. Human Rights programme at L.S.E. and the editor of The Anti-slavery Series

    Micro-movement and the memory of slavery

    Get PDF
    Ethan Geringer-Sameth is a student in the MSc Human Rights Programme at LSE and an alumnus of the African and Afro-American Studies Department at Brandeis University

    A Global Analysis of Dark Matter Signals from 27 Dwarf Spheroidal Galaxies using 11 Years of Fermi-LAT Observations

    Get PDF
    We search for a dark matter signal in 11 years of Fermi-LAT gamma-ray data from 27 Milky Way dwarf spheroidal galaxies with spectroscopically measured JJ-factors. Our analysis includes uncertainties in JJ-factors and background normalisations and compares results from a Bayesian and a frequentist perspective. We revisit the dwarf spheroidal galaxy Reticulum II, confirming that the purported gamma-ray excess seen in Pass 7 data is much weaker in Pass 8, independently of the statistical approach adopted. We introduce for the first time posterior predictive distributions to quantify the probability of a dark matter detection from another dwarf galaxy given a tentative excess. A global analysis including all 27 dwarfs shows no indication for a signal in nine annihilation channels. We present stringent new Bayesian and frequentist upper limits on the dark matter cross section as a function of dark matter mass. The best-fit dark matter parameters associated with the Galactic Centre excess are excluded by at least 95% confidence level/posterior probability in the frequentist/Bayesian framework in all cases. However, from a Bayesian model comparison perspective, dark matter annihilation within the dwarfs is not strongly disfavoured compared to a background-only model. These results constitute the highest exposure analysis on the most complete sample of dwarfs to date. Posterior samples and likelihood maps from this study are publicly available.Comment: 27+5 pages, 10 figures. Version 2 corresponds to the Accepted Manuscript version of the JCAP article; the analysis has been updated to Pass 8 R3 data plus 4FGL catalogue, with one more year of data and more annihilation channels. Supplementary Material (tabulated limits, likelihoods, and posteriors) is available on Zenodo at https://doi.org/10.5281/zenodo.261226

    Dark matter line search using a joint analysis of dwarf galaxies with the Fermi Gamma-ray Space Telescope

    Full text link
    We perform a joint analysis of dwarf galaxy data from the Fermi Gamma-ray Space Telescope in search of dark matter annihilation into a gamma-ray line. We employ a novel statistical method that takes into account the spatial and spectral information of individual photon events from a sample of seven dwarf galaxies. Dwarf galaxies show no evidence of a gamma-ray line between 10 GeV and 1 TeV. The subsequent upper limit on the annihilation cross section to a two-photon final state is 3.9(+7.1)(-3.7) x 10^-26 cm^3/s at 130 GeV, where the errors reflect the systematic uncertainty in the distribution of dark matter within the dwarf galaxies.Comment: 5 pages, 3 figures. Replaced with version accepted for publication as a Rapid Communication in PR

    A global analysis of dark matter signals from 27 dwarf spheroidal galaxies using 11 years of Fermi-LAT observations

    Get PDF
    We search for a dark matter signal in 11 years of Fermi-LAT gamma-ray data from 27 Milky Way dwarf spheroidal galaxies with spectroscopically measured J-factors. Our analysis includes uncertainties in J-factors and background normalisations and compares results from a Bayesian and a frequentist perspective. We revisit the dwarf spheroidal galaxy Reticulum II, confirming that the purported gamma-ray excess seen in Pass 7 data is much weaker in Pass 8, independently of the statistical approach adopted. We introduce for the first time posterior predictive distributions to quantify the probability of a dark matter detection from another dwarf galaxy given a tentative excess. A global analysis including all 27 dwarfs shows no indication for a signal in nine annihilation channels. We present stringent new Bayesian and frequentist upper limits on the dark matter cross section as a function of dark matter mass. The best-fit dark matter parameters associated with the Galactic Centre excess are excluded by at least 95% confidence level/posterior probability in the frequentist/Bayesian framework in all cases. However, from a Bayesian model comparison perspective, dark matter annihilation within the dwarfs is not strongly disfavoured compared to a background-only model. These results constitute the highest exposure analysis on the most complete sample of dwarfs to date. Posterior samples and likelihood maps from this study are publicly available

    Indirect dark matter detection for flattened dwarf galaxies

    Get PDF
    Gamma-ray experiments seeking to detect evidence of dark matter annihilation in dwarf spheroidal galaxies require knowledge of the distribution of dark matter within these systems. We analyze the effects of flattening on the annihilation (J) and decay (D) factors of dwarf spheroidal galaxies with both analytic and numerical methods. Flattening has two consequences: first, there is a geometric effect as the squeezing (or stretching) of the dark matter distribution enhances (or diminishes) the J-factor; second, the line of sight velocity dispersion of stars must hold up the flattened baryonic component in the flattened dark matter halo. We provide analytic formulas and a simple numerical approach to estimate the correction to the J- and D-factors required over simple spherical modeling. The formulas are validated with a series of equilibrium models of flattened stellar distributions embedded in flattened dark-matter distributions. We compute corrections to the J- and D-factors for the Milky Way dwarf spheroidal galaxies under the assumption that they are all prolate or all oblate and find that the hierarchy of J-factors for the dwarf spheroidals is slightly altered (typical correction factors for an ellipticity of 0.4 are 0.75 for the oblate case and 1.6 for the prolate case). We demonstrate that spherical estimates of the D-factors are very insensitive to the flattening and introduce uncertainties significantly less than the uncertainties in the D-factors from the other observables for all the dwarf spheroidals (for example, −3per cent+10per cent^{+10per~cent}_{−3per~cent} for a typical ellipticity of 0.4). We conclude by investigating the spread in correction factors produced by triaxial figures and provide uncertainties in the J-factors for the dwarf spheroidals using different physically motivated assumptions for their intrinsic shape and axis alignments. We find that the uncertainty in the J-factors due to triaxiality increases with the observed ellipticity and, in general, introduces uncertainties of a factor of 2 in the J-factors. We discuss our results in light of the reported gamma-ray signal from the highly flattened ultrafaint Reticulum II. Tables of the J- and D-factors for the Milky Way dwarf spheroidal galaxies are provided (assuming an oblate or prolate structure) along with a table of the uncertainty on these factors arising from the unknown triaxiality.Science and Technology Facilities CouncilThis is the author accepted manuscript. The final version is available from the American Physical Society via http://dx.doi.org/10.1103/PhysRevD.94.06352

    A robust estimate of the Milky Way mass from rotation curve data

    Get PDF
    We present a new estimate of the mass of the Milky Way, inferred via a Bayesian approach by making use of tracers of the circular velocity in the disk plane and stars in the stellar halo, as from the publicly available galkin compilation. We use the rotation curve method to determine the dark matter distribution and total mass under different assumptions for the dark matter profile, while the total stellar mass is constrained by surface stellar density and microlensing measurements. We also include uncertainties on the baryonic morphology via Bayesian model averaging, thus converting a potential source of systematic error into a more manageable statistical uncertainty. We evaluate the robustness of our result against various possible systematics, including rotation curve data selection, uncertainty on the Sun's velocity V0, dependence on the dark matter profile assumptions, and choice of priors. We find the Milky Way's dark matter virial mass to be log10M200DM/ Mo\u2d9 = 11.92+0.06-0.05(stat)\ub10.28\ub10.27(syst) (M200DM=8.3+1.2-0.9(stat) 71011 Mo\u2d9). We also apply our framework to Gaia DR2 rotation curve data and find good statistical agreement with the above results

    Exclusion of canonical WIMPs by the joint analysis of Milky Way dwarfs with Fermi

    Full text link
    Dwarf spheroidal galaxies are known to be excellent targets for the detection of annihilating dark matter. We present new limits on the annihilation cross section of Weakly Interacting Massive Particles (WIMPs) based on the joint analysis of seven Milky Way dwarfs using a frequentist Neyman construction and Pass 7 data from the Fermi Gamma-ray Space Telescope. We exclude generic WIMP candidates annihilating into b-bbar with mass less than 40 GeV that reproduce the observed relic abundance. To within 95% systematic errors on the dark matter distribution within the dwarfs, the mass lower limit can be as low as 19 GeV or as high as 240 GeV. For annihilation into tau+tau- these limits become 19 GeV, 13 GeV, and 80 GeV respectively.Comment: 5 pages, 2 figures, 2 supplementary figure
    • …
    corecore