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Abstract. We present a new estimate of the mass of the Milky Way, inferred via a Bayesian
approach by making use of tracers of the circular velocity in the disk plane and stars in the
stellar halo, as from the publicly available galkin compilation. We use the rotation curve
method to determine the dark matter distribution and total mass under different assumptions
for the dark matter profile, while the total stellar mass is constrained by surface stellar density
and microlensing measurements. We also include uncertainties on the baryonic morphology
via Bayesian model averaging, thus converting a potential source of systematic error into a
more manageable statistical uncertainty. We evaluate the robustness of our result against
various possible systematics, including rotation curve data selection, uncertainty on the Sun’s
velocity Vp, dependence on the dark matter profile assumptions, and choice of priors. We find
the Milky Way’s dark matter virial mass to be logyy M /Mg = 11.9270-95(stat) + 0.28 +
0.27(syst) (MR = 8.372(stat) x 10" My). We also apply our framework to Gaia DR2
rotation curve data and find good statistical agreement with the above results.
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1 Introduction

In the standard cosmological paradigm, only ~ 15% of the total matter density in the Uni-
verse is in the form of ordinary matter, while dark matter makes up the other 85% [1|. The
existence of dark matter has long been inferred from its gravitational interactions with ordi-
nary luminous matter on scales ranging from galaxies to the Universe as a whole (for reviews
see e.g. [2, 3]). Observations of the Universe on large scales are accurately described by the
concordance cosmological model, known as ACDM, which includes cold dark matter along
with a cosmological constant. While ACDM successfully describes the observed large scale
structure and dynamics, some observational discrepancies seem inconsistent with its predic-
tions on small scales (see e.g. [4-7]. The central question is whether these discrepancies arise
from our inability to accurately model complex but known physical processes or whether
they represent a fundamental inadequacy in the standard paradigm. Indeed, in recent years
high-resolution hydrodynamical simulations that self-consistently take into account baryonic
feedback indicate that the small-scale discrepancies can largely be mitigated within the ACDM



model [8]. In this scenario, various discrepancies, such as the missing satellites [9, 10] and
the too-big-to-fail problems [11], strongly depend on the assumed Milky Way mass, which,
if estimated incorrectly, may lead to biased conclusions (e.g [12-15]). In addition, tests of
alternative warm dark matter models [16, 17| also require knowledge of the total halo mass.
Thus, the Milky Way’s total mass and the mass of its dark matter halo are quantities of
particular interest, because they enable certain tests of the current cosmological model [18—
20]. Surprisingly, despite being a consequential parameter, the total mass of the Milky Way
is poorly constrained. Therefore, it is crucial to be able to put stringent constraints on the
Milky Way mass, which compliment other mass estimates from the existing literature and
also account for different systematic errors.

There are various techniques used to constrain the mass of the Galaxy. FEach have
their advantages and shortcomings and are affected by different sources of systematic error
(see [21] for a review). Rather than relying on a particular technique and measurement, it
is important to estimate the total Milky Way mass using different methods. Despite much
effort, the mass of the Galaxy currently carries a factor of four uncertainty. Even considering
only the most recent studies using Gaia data, the inferred Milky Way halo mass ranges from
MPM = (6 —22) x 10" Mg, ! [25-29).

This work builds on the rotation curve analysis presented in [30], hereafter called Paper I.
The aim of this paper is to provide a determination of the total mass of the Milky Way and
of its dark matter component. We demonstrate that our results provide precise and accurate
constraints, while being robust to various systematic uncertainties. Our results are compatible
with the most recent estimates using other techniques and our method can easily incorporate
new data sets over the entire range of galactocentric distances we consider in our study.

The paper is structured as follows: in Section 2 we describe the astrophysical data sets
used for the mass determination and the statistical procedures we adopt. In Section 3 we
present our results for our fiducial astrophysical setup.

In Section 4 we carry out tests of robustness using both mock data as well as by consid-
ering various systematic uncertainties, and varying our astrophysical setup. In Section 5 we
compare our results with other estimates in the literature, and also apply our own procedure
to the Gaia DR—2 data. We conclude in Section 6.

2 Methodology and Data

In this work, we further develop the methodology presented in Paper I. We analyse the
observed galactic rotation curve in a Bayesian framework in order to constrain a model de-
scribing both the large-scale distribution of baryons as well as the dark matter halo. We
then marginalize the resulting posterior probability distribution over the baryonic and dark
components to obtain a determination of the Milky Way’s total mass.

There are two main differences with respect to the analysis presented in Paper I. First,
we consider an additional prior distribution for the dark matter halo parameters (Section 2.3)
to verify the robustness of our results with respect to choice of priors. Second, we employ
Bayesian model averaging to include a range of various possible baryonic morphologies (Sec-
tion 2.4.2). As a result of this averaging procedure, our estimate of the Milky Way mass

! There is no unique convention to define a galaxy’s halo mass (see e.g. [22-24]). In this work, we define
the halo mass MR} as the mass of dark matter enclosed within a sphere which has an average density 200
times the critical density of the Universe.



fully includes systematic uncertainties arising from our ignorance of the exact shape of the
baryonic distributions.

The structure of this section is as follows: in Sections 2.1 and 2.2 we briefly describe the
rotation curve observations and the various baryonic mass distributions. Section 2.3 describes
the model of the Milky Way’s dark matter halo. Finally, the statistical framework is described
in Section 2.4. We refer the reader to Paper I and references therein for a detailed description
of the astrophysical setup (observations of the rotation curve, and of the luminous component
of the Galaxy) and statistical framework adopted in this work.

2.1 The observed rotation curve

We adopt two different compilations of Milky Way rotation curve observations, the galkin [31]
compilation and that of Huang et al. [32]. The galkin compilation consists of 25 data sets
that comprise a number of different kinematic tracers (gas, stars, and masers) of the total
gravitational potential within the visible Galaxy. Measurements extend to galactocentric
distances of ~ 25 kpc. The Huang et al. [32] compilation consists of two data sets (hereafter
referred as Huang; and Huangy), probing the total gravitational potential up to ~ 15 kpc and
~ 100 kpc, respectively. Notice that galkin and the Huang et al. data sets overlap between
8 and 20 kpc.

We start by fixing the Sun’s distance to the galactic Centre to Ry = 8.34 kpc and its
circular velocity to Vp = 239.89 km/s [32]. For the peculiar motion of the Sun, we adopt
(Us, Ve, Ws) = (7.01,12.20,4.95) km/s [32]. This choice corresponds to the one made by
Huang et al. [32] and is necessary in order to combine Huang; and Huangs with galkin. In
Section 4.5 we explore the robustness of our results when modifying various assumptions,
including the galactic parameters (Rp,Vp).

In Paper 1 we presented a method based on Bayesian model comparison to identify a
mutually compatible subset of the galkin data we call galkinjs. In summary, the method
uses the Bayesian evidence from different combinations of data sets as a discriminant to
determine which sets are mutually compatible. Data sets that are in systematic tension with
the rest of the data are discarded, in order to avoid biasing subsequent inference. With this
procedure, out of the 25 data sets of the galkin compilation we select a subset of 12 mutually
compatible data sets, which are then binned in exactly the same manner as in Paper I. We
use this resulting galkinjs data set for the present analysis.

2.2 The visible (baryonic) component

The exact distribution of baryons within the Galaxy is currently still debated, e.g. [21]. In
order to cope with this uncertainty, we adopt a large array of three-dimensional density pro-
files — motivated by observations — to describe the mass distributions of three baryonic
components of the Galaxy: stellar bulge, stellar disk, and gas. By considering every permu-
tation of baryonic profiles for the components we obtain a set of possible morphologies which
bracket the systematic uncertainty on the distribution of the baryonic mass in our Galaxy,
an approach first adopted in [33] and then followed by [30, 34].

Following the approach of [33], we combine disks and bulges individually in order to
remain agnostic as to their relative viability. That is, we express no preference on which
bulge and disk models are preferred, but present results properly averaged (see Sec. 2.4.2)
over all possible combinations. For the gas component, we keep the shape of the morphology
and total mass fixed as its contribution to the gravitation potential is subleading and including
its uncertainty would not affect our results [33, 34|. Each baryonic morphology is named by



using an abbreviation specifying the bulge followed by one specifying the disk. For example,
the model G2BR is a combination of bulge profile G2 [35] and disk profile BR [36]. We also
present a summary of the morphologies we consider in Appendix B and table 1.

Besides morphology, the total mass within each baryonic component is another source
of uncertainty. In order to account for these uncertainties, we normalise the stellar disk
profile by a parameter Y, that sets the stellar surface density at the Sun’s position [36]
and we normalize the bulge mass using the microlensing optical depth towards the galactic
center (1) [37]. Both X, and (7) are then fitted to the observations alongside all other free
parameters in the model, with a prior determined by the observational constraints on these
quantities (see Section 2.4.1). This procedure is thoroughly described in Paper I, and we refer
the reader to it and references therein for further details. We note that it is straightforward
to include additional observations which constrain combinations of baryonic morphologies by
adding terms to the likelihood (Eq. 2.9) analogous to those describing microlensing optical
depth and local stellar surface density.

2.3 The dark matter halo

The density of dark matter as a function of galactocentric radius r can be modelled by a
spherical generalized Navarro, Frenk, and White (gNFW) profile [38, 39]:
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where 75 is the characteristic radius of the halo, ps is the characteristic dark matter density,
and v is the logarithmic slope of the inner density profile. The value v = 1 corresponds to
the standard NFW profile.

In order to estimate the Milky Way mass, we rewrite Eq. (2.1) in terms of the virial mass
My = M(< Ryir) and the concentration ¢ = Ryiy/r—2. The virial radius Ry, is the radius
of the sphere in which the average dark matter density equals A times the critical density of
the Universe? p.., while r_s is the radius at which the logarithmic slope of the density profile
(dlnp/dinr) is —2, which for a gNFW halo occurs at r_o = (2 — v)rs. There is no agreed
unique choice for A (see e.g. [22-24]) and here we adopt A = 200. We relabel, accordingly,
the virial radius and the virial mass as Rggg and M%(\)/[. With these definitions in hand, the
relation between virial radius and virial mass is

PeNFW (7575, Ps, ) = (2.1)
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while in terms of the gNFW profile we have
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where 9 F(a, b; ¢; z) is the ordinary hypergeometric function. Equating these two expressions
for M%%l(\)/[ and using the definition of the concentration parameter yields an expression for ps
in terms of ¢ and ~:

2 In this work we adopt a critical density of per = 9.1 x 1072° g/cm? [40].
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By combining Eq. (2.4) with the definitions of the scale radius and the virial radius,
Eq. (2.1) can be expressed in terms of c, M%(\]/I, and ~. Then, by integrating the gNFW dark
matter density we can obtain the dark matter mass enclosed within a given radius Mpm (< 7).

In Section 4 we consider two other dark matter density profiles: the Einasto [41] and
the Burkert [42| profiles. The Einasto profile can be expressed as

PEin(r) = p—2 €xp {—i ((;)a - 1) } : (2.5)

where p_o and r_5 are the density and radius at which p(r) o r~2, and « is the Einasto
index which determines the shape of the profile, yielding a core towards the central regions
of a galaxy when v 2 1. The Burkert profile can be written as

pore
(r+re) (r2+r2)’

pBur(T) - (26)

where pg and r. are the core density and the core radius, respectively.

2.4 Statistical framework

The observed rotation curve described in Section 2.1 is governed by the total (baryonic + dark
matter) distribution of mass in the Milky Way. We use the rotation curve data, in combination
with information on the distribution of gas, stars and dark matter as described in Section 2.2,
to perform the global mass modeling and constrain the underlying dark matter distribution.
To do so we fit a global model of the Galaxy that consists of four components: stellar disk,
gaseous disk, stellar bulge and dark matter halo. Each mass component contributes to the
total circular rotation curve wyoy according to

wt20t(67 E*’ <T>) = wﬁisk(z*) + wgas + wgulge(z*v <T>) + W%M((_))? (27)

where the first three baryonic components are described in Section 2.2 and the dark matter
component (see Section 2.3) depends on parameters © = (¢, MM ~). Note that each term
in Eq. (2.7) is implicitly a function of galactocentric radius r and that angular velocities w;
are used instead of linear circular velocities (V; = rw;).

2.4.1 Priors and likelihood

For a given baryonic morphology, our gNFW model has five free parameters: the concentration
parameter of the dark matter halo ¢, the dark matter halo mass M%%l(\)d, the logarithmic
slope of the inner dark matter density profile 7, the microlensing optical depth (7), and the
stellar surface density at the Sun’s position X,. We work in a Bayesian framework which
requires setting prior distributions on the model parameters. We adopt uniform priors over
the following variables and ranges:



c € [0,100],
MDM
logyg 1\/%0 € [10,13],

v € [0.1,2], (2.8)
% € [1.9,5.7],
107 Mg kpce
1<(;—_>6 € [0.1,4.5].

We use fairly wide priors, which encompass the support of the likelihood. The last two
parameters (X, and (7)) are nuisance parameters which are each independently constrained by
Gaussian likelihoods. For the means and standard deviations of these likelihood components
we adopt the values of the stellar surface density at the Sun’s position Ry provided by [36],
¥obs = (3.8 4 0.4) x 107" My, /kpc?, as well as the measurement of the microlensing optical
depth provided by the MACHO collaboration in Popowski et al. [37]3, (7)°P® = 2.17703% x
1076, For simplicity, we symmetrize the error in the microlensing optical depth by adopting
a standard deviation of o,y = 0.47 which is conservative, as it uses the larger of the upper
and lower error bar.

The likelihood function is given in Eq. (3.3) of Paper I with the only difference being
that in this analysis the dark matter distribution is parameterized by © = (c, M%(\)/I,fy). We
show in Section 4.2 that changing the prior by adopting instead the set © = (v, s, po) does
not change our results appreciably.

For a given choice of baryonic morphology, denoted by M, the likelihood function takes
the form:

il . o (Di 2
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where we have defined the parameter vector ® = (¢, MR ~v, 3, (7)), @; is the measured
angular velocity, oy ; is the corresponding uncertainty, and ¢ runs over the radial rotation
curve bins. The posterior is obtained via Bayes theorem as

P(d|®, M)P(®|M)

P(dIM) ’
where M represents the assumed baryonic morphology (see Eq. (2.7)) and the likelihood
P(d|®, M) is given by Eq. (2.9). The prior P(®| M) is separable in the model’s parameters
and is specified in Eq. (2.8). The normalizing constant P(d|M) is called “Bayesian evidence”
or “model likelihood”.

P(®|d, M) = (2.10)

3 We have explicitly checked that by using the most-recent MOA-IT microlensing measurements (i.e. table 3
of [43]) estimates of the Milky Way mass remain unchanged.



2.4.2 Bayesian model averaging

Given the uncertainty in the choice of the baryonic morphology, we wish to incorporate this
systematic uncertainty into our final Milky Way mass estimate. Bayesian model averaging (see
e.g. [44]) allows us to marginalize over the choice of baryonic morphology by treating an index
specifying baryonic morphology type as an additional nuissance parameter. The procedure
automatically downweights baryonic morphologies that are disfavoured by the rotation curve
data, thus encapsulating an Occam’s razor principle. This method has been successfully
applied in various cosmological and astrophysical settings, see e.g. [45-47].

We denote each choice of baryonic morphology by M;. The model-averaged posterior
for the parameters @ is given by:

P(@|d) =) P(®,M|d) = > P(D|d, M;) P(M;|d)
' P(Z/\/ti) (2.11)
P(Mo)

= P(Myld) > Big P(2]d, M;),

where 4 runs over all possible baryonic morphologies and Mg denotes an arbitrary reference
morphology. Following [48], we choose My = E2HG (see table 1), as it is the morphology
that gives median rotation velocities with respect to all others. The Bayes factor B;g is the
ratio of the Bayesian evidences between model My and model M;, obtained in each case by
integrating the product of the likelihood and the parameters’ prior over the entire parameter
space:

P(dM;) [ d®P(d|®, M;)P(P|M;)
P(d[Mo) — [dOP(d®, Mo)P(®|Mo)

Bz‘O = (212)

If we assign equal prior probability to each of the N = 30 baryonic morphologies we
consider, i.e., P(M;) =1/N (i =0,...,N — 1), the prior ratio cancels in Eq. (2.11), and the
expression for the model-averaged posterior becomes simply:

N—-1
P(®[d) oc Y BiP(®|d, M;). (2.13)
i=0

In other words, we obtain the model-averaged posterior (up to an irrelevant constant) by
taking the posterior samples from each baryonic morphology i and weighing them according
to the Bayes factor between model i and the reference morphology. The model averaged
posterior distribution then gives constraints on parameters ® incorporating the additional
uncertainty coming from the unknown shape of the baryonic components.

Finally, we notice that the priors in the evidence integral in Eq. (2.12) are identical for all
the baryonic morphologies, i.e. P(®|M;) = P(®|My) for all i. Since the parameters’ priors
control the strength of the Occam’s razor penalty for each model (see [44] for details), we can
be reassured that the penalty is the same for all baryonic morphologies. This introduces addi-
tional robustness in our model-averaged results: since the Bayes factor scales approximately
linearly with the width of each prior in Eq. (2.8), a change in the range for the uniform priors
will translate into an approximate linear rescaling of each baryonic morphology’s evidence,
which cancels in the Bayes factor of Eq. (2.12). Therefore we can conclude that the exact
choice of prior range for the model parameters is unimportant for our model-averaged results
(as long as the prior width is larger than the support of the likelihood, which is the case here).



2.4.3 Posterior sampling and evidence estimation

We draw samples from the posterior distribution (conditional on a given baryonic morphology)
by using the open source nested sampling code PyMultiNest [49]. PyMultiNest is a Python
interface for MultiNest [50-52|, a generic Bayesian inference tool implementing the nested
sampling algorithm [53]. The Bayesian model averaging analysis requires the calculation of
the Bayesian evidence, which is the primary reason we use MultiNest instead of conventional
Markov Chain Monte Carlo (MCMC). PyMultiNest delivers at the same time both poste-
rior samples and an estimate of the Bayesian evidence, which we then use to compute the
Bayes factor entering Eq. (2.13). We also perform an accuracy test against mock data (see
Section 4.1) and explore the effect of different choices of prior (Section 4.2) using the open
source affine-invariant Markov Chain Monte Carlo (MCMC) ensemble sampler emcee [54]. It
is also used in some of the runs of Section 4 where the calculation of the Bayesian evidence is
not required. As a further test of the numerical stability of our results, we have checked that
we obtain identical results for the posterior distributions for a given morphology when using
PyMultiNest and emcee, up to sampling noise.

3 Results

In this section we present results obtained by using in a combined form the three sets of
data galkinjs+Huang;+Huangs. We show model-averaged parameter constraints, as well as
constraints for individual morphologies. In Section 4 we show that these results are robust
against several tests including the adoption of alternate halo priors and the use of differ-
ent rotation curve data sets. Finally, on top of the uncertainties coming from our analysis
we quantify two additional systematic uncertainties related to the parameterization of the
underlying dark matter density profile and the value of the local circular velocity.

3.1 Posterior constraints

First, we present the results conditional on each of the 30 possible combinations of disk and
bulge morphologies discussed in Section 2.2. table 1 summarizes the posterior constraints on
the virial radius Ragg, concentration parameter ¢, virial mass M%(\J/I, and baryonic mass of the
Milky Way for each permuation of possible baryonic morphologies. It is interesting to note
that both the virial mass and the baryonic mass do not vary much from one morphology to the
next. Such small variations can also be appreciated in figure 1, where we plot the resulting
posteriors for the dark matter parameters ¢ and MM for different baryonic morphologies
along with the model-averaged posterior described in Section 2.4.2. We present the results
only for the above mentioned two parameters because, as we showed in Paper I, the slope of
the inner dark matter density profile v and the scale radius r; are degenerate, thus making
the separate reconstruction of the two parameters challenging. Here, with the conveniently-
parameterized gNFW profile, we instead have a correlation between - and the concentration
parameter ¢, with the former still remaining weakly constrained. Despite this degeneracy, the
data yields tighter constraints on M%(\)/[, which is the primary target of this study.

We show in figure 2 the Bayes factors In B;g between all models and the reference mor-
phology, together with levels that denote “weak” and “moderate” evidence against model %
(horizontal dotted lines), according to the nomenclature adopted by [44]. We find moderate
evidence against only one morphology (VCM) when compared to the reference morphol-
ogy, with all others having posterior odds of less than 12 : 1. We also notice that most of
the J ([62]) and HG (|59]) disk types have Bayes factors above even the “weak” evidence



Baryonic Rogo c MEM Myar Mot Bio
morphology [kpc] [101 Mg] | [101° Mg] | [101 Mg] | —
G2 [35|BR [36] | 20178 | 1672 | 9.3%)2 6.770% 10.0739 | 0.24
E2 [35|BR [36] | 200%8 | 1673 | 9.2751 6.8153 9.9%58 | 0.21
V [55]BR [36] 20218 | 1675 | 9.4%52 6.810% 101159 | 0.20
BG [56|BR [36] | 20275 | 1677 | 9.570% 6.8704 10298 | 0.16
Z [57|BR. [36] 20118 | 1675 | 9.3707 6.7103 10.0197 | 0.26
R [58|BR. [36] 20072 | 1677 | 9.5709 6.8703 10.1195 | 0.31
G2 [35|HG [59] | 193*2 | 1972 | 8.27}4 6.4155 8.8159 | 0.56
E2 [35|HG [59] | 193f1 | 1973 | 8.3%0% 6.475 88759 1 1.0
V [55]HG [59] 19379 | 1973 | 8.270 6.4701 8.9M0% | 0.32
BG [56|HG [59] | 192%3 | 1972 | 8.1759 6.5103 8.8702 | 0.53
Z [57]HG [59] 19313 | 1973 | 83103 6.470:3 8.9%0% | 0.75
R [58]HG [59] 19377 | 1972 | 8.270% 6.310:4 8.9M07 | 1.43
G2 [35]CM [60] | 188%¢t | 2213 | 7.6707 6.2705 8.475% | 0.09
E2 [35]CM [60] | 18675 | 222 | 7.5%2 6.410 8115t | 0.19
V [55]CM [60] | 19175, | 22%3 | 7.9770 6.270% 8.5T99 | 0.06
BG [56]CM [60] | 188%2 | 2272 | 7.8707 6.3155 8.410-5 1 0.09
Z [57]CM [60] 18978 | 2213 | 7.7H0G 6.2103 8.510% | 0.12
R [58]CM [60] 18972 | 2272 | 7.979 6.270 8.5T08 | 0.25
G2 [35]dJ [61] 19079 | 2113 | 8.0} 6.3103 8.7105 | 0.13
E2 [35]dJ [61] 19018 | 2073 | 7.9%0% 6.5705 8.5707 | 0.30
V [55]dJ [61] 19175 | 2113 | 8.0 5% 6.4153 8.675% | 0.08
BG [56]dT [61] | 190*% | 213 | 7.9%10 6.4705 8700 1 0.13
Z [57]dJ [61] 18873t | 2175 | 7.8T58 6.4153 8.4t |07
R [58]dJ [61] 18912 | 2173 | 7.7E03 6.4704 84700 | 0.33
G2 [35]J [62] 193710 | 1972 | 82733 7.119 9.075L 1 043
E2 [35]J [62] 19277 | 1972 | 8.270% 7.3704 9.0M97 1 0.73
V [55]J [62] 192419 | 20%3 | 8.2t12 71756 8.9T0% | 0.26
BG [56]J [62] 19272 | 20%2 | 8.2*1] 7.2103 8.975% | 0.38
Z [57]3 [62] 191430 | 1973 | 79403 71703 8.8M09 | 0.55
R [58]J [62] 19173° | 2013 | 8.0%57 71702 8.8709 | 1.01

Table 1: Maximum a posteriori (MAP) estimates with uncertainties obtained from the 68%
HPD region. All baryonic morphologies assume the gas density profile taken from [63, 64].
The Bayes factor Bjg is calculated using Eq. (2.12). My,, corresponds to the total baryonic
mass within Ragg.
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Figure 1: One and two-dimensional marginalized posterior distributions for the dark matter
parameters ¢ and MPM for our reference morphology (thick blue), all other baryonic mor-
phologies (thin lines) and model-averaged (thick pink). In the legend caption, the first part
of the name refers to the bulge morphology while the second part to the disk morphology
(see table 1 for references). Lines are colored by disk morphology since the results are mainly
dictated by the disk, which contains most of the baryonic mass, as noted in [34].

threshold, meaning that they all contribute approximately equally to the model-averaged
posterior®. No baryonic morphology can be ruled out with “strong” evidence, which would
require In B;g = —5.0, or odds in excess of 150 : 1. This result is conditional on our choice of
dark matter profile (described by a gNFW profile) and assumed value of the Sun’s circular
velocity. We address this point further in Section 4 below.

After marginalizing over all other parameters and model averaging over baryonic mor-
phologies, we obtain the following determination of the Milky Way halo’s dark matter virial
mass log;, MM /Mg = 11.92t8:8g or on a linear scale:

My =8.3152 x 10" Mg, (3.1)

4 The morphology of the HG stellar disk [59] is based on a pure thin plus thick disk, while the morphology
of the J stellar disk [62] additionally includes a stellar halo component.
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Figure 2: Natural logarithm of Bayes factors plotted for each baryonic morphology desig-
nation. Color-coding is the same as in figure 1. Horizontal dotted lines delimit models that
are weakly disfavoured (In Bjp < —1.0) and moderately disfavoured (In B;yp < —2.5) on the
Jeffreys’ scale of evidence as compared with the reference morphology E2HG.

where uncertainties correspond to the 68% credible region (defined as highest posterior den-
sity, HPD, interval, i.e., the shortest interval containing 68% of posterior probability). Our
estimate of the total mass of the Milky Way —the sum of baryons and dark matter— within
the virial radius, is log g Mot/ M = 11.95J_r8:8?1 or on a linear scale:

Moy = 8.9759 x 10M Mg, (3.2)

The quoted uncertainties on the above estimates take into account both statistical and sys-
tematic uncertainties, the latter arising due to our ignorance of the shape of the baryonic
components in the Galaxy.

4 Tests of robustness

4.1 Average long-term properties of the MAP estimate

Our analysis is Bayesian and all results are conditioned upon the actual data that was ob-
tained. But it is informative to explore the frequentist performance of our method, in partic-
ular how it responds to expected fluctuations in the measurements.

To do this we generate 100 mock rotation curve data sets (with properties mimicking the
real data) and perform our Bayesian analysis on each one. A mock observation is generated by
fixing ® = (¢, MM, v, 24, (1)) to a set of “true values” and calculating the resulting rotation
curve we(r,®) as in Eq. (2.7). The mock data for each radial bin @; are sampled from a
Gaussian with mean w.(r, ®) and standard deviation equal to the standard deviation of the
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real data within the bin O'%i, i.e. using the first factor of Eq. (2.9). This procedure for the
generation of the mock data based on observational uncertainties is the same as adopted in
Paper I. We fix the baryonic morphology to our reference morphology (E2HG) in both the
mock data generation and the reconstruction.

We consider 25 fiducial configurations for ® (5 possibilities each for ¢ and ~ and fixed
values for the remaining three parameters). For each configuration we generate 100 mock
rotation curve observations, construct the posterior for each using the identical settings as in
our analysis above, and identify the MAP estimate of virial mass Myiap. We quantify the

performance of our procedure by estimating the fractional standard error, defined as FSE =

\/ E[(MM AP — Mirue)?]/Mirue, where E denotes expectation under repeated observations (for
details see Paper I, Section 4.1). We approximate this expectation by averaging over the 100
mock observations.

We find that for all of our 25 fiducial configurations the FSE does not go above ~ 20%.
This is similar to the width of the marginalized posterior for MPM conditioned both on the
actual data and the mock data. From this we conclude that, first, the width of the posterior
is comparable to that expected from random fluctuations in the data. This suggests that the
posterior is likelihood-dominated. In other words, the posterior appears to be capturing the
effects of measurement uncertainty as we might expect. Second, the priors are not inducing a
significant frequentist bias in our analysis since the (fractional) bias in the Miap estimator
can be no larger than the FSE (see Section. 4.2 for further analysis of prior dependence).

4.2 Choice of priors

The results described above have been obtained by adopting the set (c,log;q M%(\)/I,V) as
parameters for the dark matter halo, with uniform priors described in Eq. (2.8). As in any
Bayesian analysis the choice of prior distribution is ultimately subjective and it is important
to quantify how results depend on this choice.

We consider the alternative parameterization of the gNFW profile in terms of v, pg, and
rs (see Eq. (2.1)) and consider uniform priors on these parameters as in Paper 1. The range
allowed for each parameter is as follows:

v €10,3],

Ts
0,40
kpc € (0,40},
__Po
GeV /kpc3

(4.1)
€ [0,1].

It is to be noted that the upper edge of the prior range of ~ is larger than the one
from Eq. (2.8). However, our results are insensitive to this choice since the posterior always
constrains vy to be less than 2 (cf. figure 8 of Paper I).

Since the relationship between the two parameterizations is non-linear, uniform priors
in (rs,po) do not correspond to uniform priors in (c, MDN). However, if the likelihood is
sufficiently constraining (i.e. data-dominated) we expect the two posterior distributions to
agree. This is demonstrated in figure 3, where we compare the posterior distributions on
(logyg MIM, ¢) obtained with the two sets of priors and conditioned on the reference baryonic
morphology E2HG. We observe that while a uniform prior on (rg, pg) translates into an
informative prior on (¢, MM, the posterior distributions obtained with the two sets of priors
closely agree with each other (compare the red and blue solid curves). We thus conclude that
the choice of parameterization has very little influence on our determinations of ¢ and M%l(\)/[.
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Figure 3: One-dimensional marginal densities (normalized to the peak) and two-dimensional
marginal posterior 68%, 95% and 99% HPD regions with a uniform prior on log;q M3 and
¢ (red solid) and with a uniform prior on py and r, (blue solid), assuming our reference
baryonic morphology (E2HG). Dashed lines in the 1D plots indicate the corresponding priors.
Squares/dashes give the maximum likelihood values in each case.

To check the effect of prior choice on the Bayesian model averaging we compute the
Bayes factors Byg (Section 2.4.2) for several baryonic morphologies for the two prior choices.
table 2 shows that the changes in Bayes factors are negligible and so the weighting of each
morphology in the model averaging is approximately independent of prior choice. The exercise
indicates that our results are dominated by the observational data and are robust to changes
to our prior distributions.

4.3 Data selection

Our analysis combines data sets that are based on a variety of kinematic tracers (which either
belong to the stellar disk or stellar halo). In this section we check how our results change when
adopting different data combinations. Here we show the comparison of virial mass posteriors
when analyzing the following combinations of data sets:

1. galkinp, alone
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Uniform prior in
(7, logyg M%%)I(\J/I’ c) (7,755 o)
B 3 M%DOI(\)/I’C Ts,P0 M%DO%/[’C Ts,P0
aryonic morphology In By, In B In B, —In By

G2CM —2.39£0.10 —2.374+0.10 —0.024+0.14
VBR —1.61 £0.11 —1.734+0.10 0.124+0.15
BGHG —0.64 +£0.10 —0.54 +£0.10 —0.114+0.14

RJ 0.01 +£0.10 0.04 £0.10 —0.034+0.14

Table 2: The Bayes factors By for two different choices of prior for the dark matter halo
parameters for several baryonic morphologies. The final column shows the difference in Bayes
factors between the two priors.

1.04
galkinlg
—— Huang;+Huang,

0.81 —— galkinjs+Huang;+Huangs
0.61

0.41

0.21

0.0

11.55 11.70 11.85 12189[ 12.15 12.30 12.45
logg Moy /Mo

Figure 4: One-dimensional marginalized posterior distributions for the virial mass for our
reference baryonic morphology (E2HG) when analyzing different data set combinations. The
combination galkinjs+Huang;+Huangs is the one used in our main analysis.

2. Huang; + Huangy (i.e. the full Huang et al. [32] data set over the range 8 to 100 kpc)
3. galkinjs + Huang; + Huangs (the set used for our main analysis)

For the sake of simplicity we fix the baryonic morphology to our reference model E2HG.

In figure 4 we show the posterior distributions on the virial mass for the three differ-
ent combinations of data sets (numerical values are listed in table 3). The constraints on
the virial mass from different data sets combinations are mutually compatible within the
quoted statistical uncertainties. The difference between central MAP values for galkinjs and
Huang; + Huangs data combinations (two data sets that are statistically independent) is
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Data combination logqg M%(\)/I/MQ logy MQ%I(\)/[/MQ
MAP median
galkin)s 11.8370:18 11.86701
Huang; + Huang; 11.95t8:8§ 11954!8:82
galkinjo+Huang|+Huangs 11-92J_r8:82 11-92J_r8:82

Table 3: Estimate of dark matter virial mass for analyses of different data set combinations
for our reference baryonic morphology (E2HG). The second column lists maximum a pos-
teriori (MAP) estimates with uncertainties obtained from the 68% HPD region. The third
column gives the median of the posterior with uncertainties corresponding to the 15.9 and
84.1 percentiles of the posterior.

Profile log g M2 /Mg log;g Mpar/Mg logo Miot /Mg
Einasto 11.647009 10.8819:93 11.7019:9%
Burkert 11.90%5:03 10887005 11.9470:03
gNFW 11.92+0.08 10.82+004 11951003

Table 4: Virial, baryonic, and total mass estimates for three different dark matter density
profiles. In each case, values are obtained after model averaging over baryonic morphologies.
Central values are maximum a posteriori (MAP) estimates and uncertainties correspond to
68% highest posterior density (HPD) credible intervals.

Alogy M%%l(\)/[ = 0.12dex. The posterior for the combined data set lies between that obtained
from each data set separately, as expected.

4.4 Choice of dark matter density profile

We examine the robustness of the Milky Way mass estimate with respect to the choice of
dark matter density profile. In addition to the gNFW profile adopted above, we present here
a comparison to the Einasto [41] and Burkert profiles [42] introduced in Egs. (2.5) and (2.6).
For these two profiles we adopt uniform priors over the following ranges:

Einasto profile:

¢ € [0,50],
MDM
logqg 222 € [10,13], (4.2)
Mg
a € [0.1,1.5].
Burkert profile:
o € [012)
DM (4.3)

M.
lo 200 ¢ 110, 13].
€10 Mg, [ ]
The resulting posterior estimates of the dark matter, baryonic, and total mass are given

in table 4, obtained after marginalizing over all the other parameters and model averaging
over baryonic morphologies.
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Figure 5: MAP estimate of the cumulative mass profile (dark matter only in the top panel,
total mass in the bottom panel) for the three different dark matter profiles (solid lines) and
the corresponding 68% credible intervals (light shaded areas). Credible intervals are HPD
regions, conditioned on the radius and model-averaged over baryonic morphologies. Mass
profiles are plotted out to the MAP estimate of the virial radius, Rogg, for each profile.

The MAP estimates for M2DOI(\)/[ obtained assuming gNFW and Burkert profiles are within
the 68% credible intervals of one another, but are both considerably larger than the value
obtained assuming an Einasto profile. This can be understood from figure 5, showing the
enclosed dark matter (top panel) and total mass (bottom panel) as a function of radius
for the three profile types. The effect of profile choice on total mass is subdominant with
respect to statistical uncertainties within a radius of about 50 kpc. However, the dark matter
mass is determined independently of the assumed profile shape only in the range between 20
and 50 kpc (top panel in figure 5). Because the Einasto profile ties together the behavior
of the inner and outer halo, the data-driven preference for a somewhat more cored dark
matter profile in the inner 10 kpc (compared to gNFW) translates into a flatter cumulative
mass profile beyond about 50 kpc, the region where approximately 50% of the total mass is
accumulated in the gNFW and Burkert cases. This explains why the Einasto profile gives
a MAP estimate 0.28 (0.25) dex lower for log;y MRM (logyg Miot) compared to gNFW or
Burkert profiles.

~16 —



Einasto profile

. Equal odds

[ ] Weakly disfavoured

In By
L]
[ ]
L]
[ ]
L]

] e ® @ Moderately disfavoured
a
’ °

Strongly disfavoured

TR TS SO OD D OO0 D DO DD DD DD SN NNy
STSTEEST OGS P EESF OV SIS s
Morphology Code
Burkert profile
©
>
Vv
- Equal odds
= Q -
m: s Weakly disfayoured
o ° e Moderately disfavoured
/
® o
® e 0
L]
/).4 [ ]
) Strongly disfavoured
L A °
©
L]
°
®
SR LI EICLO O LG D QOP DG DO LLAD LLDD
FPFFETFITFVFTS T FETET SEFE STFE
& <$ F YL
S ¢
Morphology Code

Figure 6: As in figure 2, but for the Einasto (top panel) and Burkert (bottom panel)
profiles. Uncertanties on the Bayes factor are about In AB;y = 0.1, smaller than the size of
the marker on this scale.

In principle, a more flexible gNFW model could be adopted (e.g. with variable outer
slope and variable sharpness of the transition around 7). In such a model the width of the
marginal posterior on M%(\)/[ would incorporate the additional systematic uncertainty due to
the functional form of the dark matter density profile adopted. For the purposes of this study,
we separate out the effect of profile choice from other sources of uncertainty, identifying it as
source of systematic uncertainty for the virial mass M%l(\)/l. We quantify such uncertainty by
the difference in the MAP estimate for log;, M%%I(\)A between the gNFW and the Einasto profile
(since the Burkert profile gives a similar value as gNFW), and evaluate it to be 0.28 dex.

The choice of dark matter profile also impacts on the model-averaging results, by chang-
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Vo [km/s] logyo Mgy /Mo
218 11.43%73 05

233 117302 0o
239.89 (fiducial) | 11.83737505)
248 119701 28323

Table 5: MAP values of the virial mass and the corresponding 68% (95%) credible intervals.
We adopt our reference morphology, Ry = 8.34 kpc and use the galkin;s rotation curve data
only, which allow for rescaling of V.

ing the relative weights of the baryonic morphologies, an effect that feeds into (and is already
accounted for by) the above systematic uncertainty. We have re-computed all Bayes factors
entering into Eq. (2.13) for the Einasto and Burkert profiles, and they are plotted in figure 6.
Compared to figure 2, we observe a preference for the BR-type disks, moderate in the case of
the Einasto profile and strong for Burkert. This results in the model-averaged posteriors for
these two profiles being strongly dominated by BR-type morphologies, differently from the
gNFW case, where no morphology is strongly preferred.

The preference for BR-type morphology for the Einasto and Burkert dark matter profile
choice arises from a combination of two factors: firstly, BR-type morphologies allow for a
better fit to the microlensing optical depth, (7); secondly, the BR-type morphologies exhibit
a reduced Occam’s razor effect in comparison to the other choices of morphologies. The latter
is a purely Bayesian effect in our model comparison framework, arising from the different
volume of the posterior distribution for the different morphologies when assuming one or the
other dark matter profile.

Indeed, we have checked that from a frequentist point of view, the preference for BR-type
morphologies is weaker than in the Bayesian case. This is rather unusual, for in the more
commonly encountered case of nested models the contrary is typically true: the Bayesian
model comparison result is more conservative than hypothesis testing based on e.g. likelihood
ratio tests. However, in this case the models being compared (i.e., different morphologies for
the same choice of underlying dark matter profile) are not nested, so we cannot rely on
the usual theorems regarding the distribution of the likelihood ratio test statistics. As an
illustration, we have computed the distribution of the log-maximum likelihood ratio between
two morphologies, BGBR and E2HG (our reference morphology) numerically, by producing
an empirical distribution from mock data under each hypothesis. Inspection of the simulated
distributions and comparison with the observed values of the test statistics show that, firstly,
neither morphology can be rejected in a frequentist hypothesis test at any confidence level.
This means that either morphology can be adequately fit with the data. Secondly, comparing
morphologies via a log-likelihood ratio test between the two hypotheses as test statistics
results at best in a weak preference for one of the two (p-value of 0.02).

4.5 Dependence on the local circular velocity

Rotation curve circular velocities —and ultimately our results— depend on the galactic param-
eters (R, Vp) adopted, and it is therefore important to test the solidity of our determination
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Figure 7: Virial mass estimate as a function of local circular velocity Vp, for Ry = 8.34 kpc.
The magenta pentagon shows the MAP estimate of the virial mass for the fiducial value of the
circular velocity, Vy = 239.89km/s see Section 2.1. Error bars are 68%/95% HPD credible
regions. These constraints use the galkings rotation curve data only, which allow for rescaling
of Vp, and assume our reference baryonic morphology (E2HG), without model-averaging over
morphologies. The lower and upper values of V| enclose the 1-¢ region for Vj from the latest
measurements of the galactic parameters.

with respect to their variation. We note that the effect of varying V{, dominates that of Ry,
so in the following we focus on the effect V) has on the determination of the virial mass®.

In order to perform such a test, we make use of the galkinjs data alone: whereas it is
trivial to rescale appropriately the rotation curve data from disk tracer measurements (such as
those collected in galkin, see e. g. equations 1 and 2 in [31]) for different galactic parameters,
it would be extremely cumbersome to do the same for the Huang et al. [32] dataset, as the
halo objects are connected to an equivalent circular velocity in the disk through a full Jeans
analysis. In Section 4.3 we showed that the determinations of M%%l(\)/[ are consistent when
using either galkings alone, Huang;+Huangy, or both together. Therefore, we can explore
the effect on M%l(\)/[ of varying the galactic parameters using the galkins data set by itself,
which allows for a simple rescaling of the adopted value of Vj.

We have so far adopted the galactic parameters in Huang et al. [32], namely Ry =
8.34kpc and Vp = 239.89km/s. Here we vary Vj, highlighting that a wide range in Vj
encompasses uncertainties on the tangential peculiar motion of the Sun since the galactic
parameters Ry, Vp and V; are related through the total angular velocity of the Sun €}, o
[21, 66]. Figure 7 shows how the posterior on the virial mass (conditioned on the reference
baryonic morphology E2HG) is affected by changes in V{. Numerical values are listed in
table 4.5 where we see that log,q Mo increases by a factor 0.54 dex (or by a factor ~ 3.5)
when varying V) from 218 km/s to 248 km/s. This range of values — broader than the one in
[67] Vo = 23343 km/s — is based on the following where we propagate a set of astrophysical
uncertainties.

5Tt is well known that the variation of Ry alone has smaller effects than that of Vo, within comparable
ranges. We have checked that for the case at hand, the variation of Ry alone has negligible effects on estimate
of the virial mass with respect to the variation of Vj, within the uncertaity intervals adopted [21, 65].
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We adopt the recent determinations of the galactic parameters (Ry = 8.122 + 0.031 kpc
[65], the peculiar motion of the Sun in the tangential direction Vi = 12.24 + 0.47 km/s [68];
Qgo = 30.24 £ 0.12 km/s/kpc [69], and the local standard of rest Viggp = 0 £+ 15km/s
[21]) and use standard error propagation to obtain a Vj distribution described by the above-
mentioned range, Vp = 233 £ 15 kmm/s. Notice that the value Vp = 239.89km/s adopted
as fiducial throughout this paper, is within this interval, not too far off with respect to the
best current estimate. If we vary the value of Vj within the 1o interval (i.e., from 218 km/s
to 248 km/s), our MAP estimate of log;y MM (obtained from galkinjs data only) varies
by 0.42 dex for the Burkert profile, by 0.54 dex for the gNFW profile, and by 0.54 dex for
the Einasto profile (assuming the reference morphology in all cases; for Einasto and Burkert
profiles and BR morphology the variation is about 0.40 dex). In order to be conservative, we
thus adopt the largest of these variations, namely 0.54 dex. Consequently, our estimate of
the systematic uncertainty associated with the residual uncertainty in the value of Vj is half
of this value: 0.27 dex (a factor of 1.9 on a linear scale). This is in addition to the systematic
uncertainty due to the choice of dark matter profile, which is comparable at 0.28 dex. By the
same procedure we estimate the systematic uncertainty in log;, Mot due to Vy and find it to
be similar at 0.25 dex (a factor of 1.8 on a linear scale).

Finally, a change in the value of V; adopted also induces a change in the Bayes factors for
the baryonic morphologies, and hence an additional change in the inferred value of the mass
as the weight of each morphology shifts. While this effect is not captured by our estimate
above for the systematic uncertainty from Vj, it could in the future be addressed by upgrading
Vb to a nuisance parameter to be included in the scan. This will however require addressing
the issue of how to perform an on-the-fly Jeans analysis (as the parameters in the model
are scanned over) in order to obtain a Vj-dependent likelihood for the Huang et al. data,
something that we leave for future work.

5 Comparison with other mass estimates

In figure 8 we compare our “fiducial” determination, namely our model-averaged determination
of Miot, ® (Eq. 3.1), for the galking;s+Huang data, and (Rg, Vo) = (8.34kpc, 239.89 km/s),
with results from previous studies. Rather than providing a complete review of values from
the literature (for which we address the reader to the recent [94]), we present a representative
set of estimates obtained with different techniques (shown in different colors in figure 8) in
order to highlight the spread in measurements of the Milky Way halo mass. These methods
include the timing argument [71], dynamics of the Local Group (LG) [72|, kinematics of
satellites [19, 29, 73-78, 95|, modelling of stellar streams [79, 80| and the escape velocity [18,
20, 26, 28], the rotation curve technique [81, 82, 92|, and the use of kinematical tracers of
the stellar halo |25, 83-91]. It is important to note that even those estimates that use the
same technique do not always agree. In particular, different estimates of the halo mass of the
Galaxy based on dynamical tracers range from ~ 8 x 10 Mg, to ~ 20 x 10! M as shown
in figure 8.

Our halo mass estimate (vertical gray shaded regions in figure 8) is at the lower end
of most mass estimates in the literature. However, it is in agreement with recent mass
determinations (e.g. [72, 73, 85|), particularly with those based on the latest Gaia data
(e.g. [25, 28, 29, 70, 93]).

6 Note that some literature adopts the definition of mass Mo, = 200pc-47/3R3,., slightly different from the
one used throughout this work.
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Figure 8: Comparison of our inferred Milky Way mass Mo (dark + baryonic mass) with a
selection of previous estimates based on different data sets and methodologies. The vertical
gray shaded regions show our 68% and 95% credible intervals (HPD) for our Bayesian model-
averaged value of My, see Eq. (3.2). The brown dashed errorbar referred as “This work (Gaia
data)" shows the 68% credible interval (HPD) for our Bayesian model-averaged determination
of the MW virial mass using the Gaia DR2 data from |70]. Solid error bars represent the halo
mass estimates coming from [18-20, 71-91|, while dashed error bars correspond to the latest
measurements using Gaia data [25, 26, 28, 29, 70, 92, 93]. The color coding indicates the
technique used to estimate the virial mass of the Galaxy. Quoted uncertainties correspond
to 68% confidence/credible intervals. Note that various studies may adopt different values of
Ry and/or Vj, which can introduce an apparent incompatibility.

In figure 9, we show the total mass profile of the Milky Way as a function of galactocentric
radius, and indicate 68% and 95% HPD regions.” Note that the shaded region shows the
uncertainty at each fixed radius. We find that the uncertainty on the total mass increases
with radius. We additionally notice an anti-correlation in the posterior between the mass
of the baryons and the dark matter within a given radius due to the fact that the rotation
curve is sensitive to the total mass. We have verified that, as one might expect, this anti-
correlation is present in the inner 20 kpc and disappears beyond that radius, where the

" The inferred enclosed mass as a function of galactocentric radius is also listed in table 6 of Appendix A.
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Figure 9: Milky Way mass profile for the maximum posterior density parameters (black

dashed curve) and the corresponding 68%/95% credible intervals (dark/light gray shade),
conditioned on the radius and model-averaged over baryonic morphologies. Also plotted are
results from several other studies of the Milky Way’s cumulative mass distribution [18, 25,
27, 79, 80, 82-84, 86-93, 95-105|. The markers around 50 kpc and 100 kpc are artificially
dispersed horizontally so that they are distinguishable. The black arrow denotes the latest
lower bound for M. from [106]. As with figure 8, note that different choices for Ry and/or
Vo among studies can induce apparent discrepancies.

baryonic contribution becomes negligible. As a result, the total mass is constrained much
more tightly than the individual component masses within around 20 kpc.

Figure 9 also shows estimates from previous studies of the Milky Way mass within various
radii. Our total mass profile is compatible at 1o with most estimates summarised in the figure.
The estimates that fall outside our 68% HPD region are |18, 25, 80, 82, 88, 90, 91, 97, 98, 100],
though we stress that many of these studies adopt different values for the galactic parameters,
thus preventing a straightforward comparison.

5.1 Comparison with Gaia data

We compare our determination of the MW virial mass with that obtained using the Gaia
DR2 catalogue. To do so we apply our procedure to the rotation curve derived from Gaia
data by Eilers et al. [70]. The latter are provided as circular velocities, regressed from a Jeans
analysis, for the values (Rp,Vy) = (8.122kpc,229km/s). We have therefore rescaled our
galkinjo dataset to these values (in a procedure analogous to that described in Section 4.5),
and performed a model-average estimate, using both the Gaia dataset |70], and our galkinjs
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data, separately, thus being able to directly compare the two determinations in a physically
meaningful way. figure 10 shows the Filers et al. data, together with the galkinio data,
rescaled to the same Galactic parameters adopted in the Eilers et al. analysis. We also show
three best-fit models: the best-fit for the galkinis data (x?/dof = 0.6, with the best-fitting
morphology being RBR); the best-fit for the Eilers et al. data (x?/dof = 0.1, with the best-
fitting morphology being ZCM), and the best-fit for the Eilers et al. data using the E2BR
morphology, which approximately matches the baryonic model B2 used in [93] (giving x2/dof
= 1.2; the difference with respect to the ZCM morphology is mostly driven by the poorer fit to
the microlensing optical depth and stellar surface density when using the E2BR, morphology,
rather than from a significantly different fit to the rotation curve data). The dark matter mass
MAP estimates and their 68% credible intervals are MEN = (8.073%%)x 10 M, (galkinis
data and RBR morphology), MM = (4.475:0)x 10" M, (Eilers et al. [70] data and ZCM
morphology), and MM = (6.8715)x 10" My, (Eilers et al. [70] data and E2BR morphology).

300

Ry =8.122kpe, Vy = 229km/s
2501
200 r =~ :l

Vv [lim/b]

1007 —— Best-fit for galkin;,, RBR morphology

=== Best-fit for Eilers et al., ZCM morphology
= == Best-fit for Eilers et al., E2BR morphology

501 | sgalkin,
I Eilers et al.
0 : ; ; i i
) 10 15 20 25
r [kpc]

Figure 10: Rotation curve data from galkinis and Gaia (Eilers et al. [70]), re-scaled to
the Galactic parameters Ry = 8.122 kpc and Vy = 229 km/s, and total best-fit (baryonic +
dark matter) rotation curves for three different morphologies (see text for details).

For the model-averaged analysis over all morphologies, we obtain the following results:
MPM = (3.3772)x 10" M, (galkinis data) and MM = (4.7759)x10"" Mg, (Eilers et al.
data), which are in agreement within the statistical uncertainties. Our dark matter estimate
from Gaia data is lower than the values quoted by [70] (see figure 8). This is because we use
a different dark matter density profile and we allow the baryonic mass and morphology to
vary. Our estimate is also somewhat lower than that of [93]. In this case the difference can
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be ascribed to our model-averaged result that gives a higher weight to a different baryonic
model than the ones assumed in [93]. In particular, our E2BR morphology, which is similar
to B2 model of de Salas et al. [93], is strongly downweighted in the Bayesian model averaging
when compared to others. As mentioned above, when assuming the E2BR morphology we
obtain a dark matter mass of MM = (6.8ﬂ:§)><10111\/[@ which is in good agreement with

the estimate of [93] obtained for their baryonic model B2.

6 Conclusions

We have used rotation curve data to estimate the dark and total mass of the Milky Way and
performed a careful assessment of the robustness of these estimates. Our Bayesian framework
allows us to marginalize over nuisance parameters as well as average over baryonic morpholo-
gies, thus accounting for uncertainty in the shape of the Milky Way’s distribution of baryons.
We have identified a residual dependency on the assumed parameterization of the underlying
dark matter density profile. Changing the adopted shape of the dark matter density profile
yield a change in the inferred Milky Way virial mass MRM by ~ 48% (or 0.28 dex). The
value of MQDOI(\)/I is also dependent on the local circular velocity V. We find that a variation of
Vo within the latest observational uncertainties leads to an uncertainty of 0.27 dex in M%l(\)/[.
We have obtained estimates for the dark matter mass within the virial radius:

logio Mgt /Mg, = 11927008 (stat) + 0.28 + 0.27(syst),
and the for the total (sum of dark matter and baryons) mass within the virial radius:
log1g Miot/Me = 11.95700% (stat) + 0.25 + 0.25(syst).

The first systematic error comes from the choice of dark matter density profile, while the
second is associated with the uncertainties on the Sun’s velocity V(. As it can be seen, these
mass estimates are precise from a statistical point of view, but suffer from a relatively large
remaining systematic uncertainty.

Finally, we have compared the results from our analysis of halo and total Milky Way
mass with estimates based on previous studies that use different techniques and find our
determination to be in agreement with most studies in the literature. We have also applied
our procedure to the Gaia DR-2 data, obtaining a determination in good agreement with that
proceeding from different datasets.

A Mass profile constraints

In this Appendix we provide the posterior constraints on the virial and total mass profile
obtained in this analysis (after model averaging). The total mass profile is plotted in figure 9
and figure 5.

B Baryonic morphologies

A model for the baryonic component of the Milky Way is needed to constrain the Milky Way’s
total gravitational potential. Despite many efforts in the amount and quality of observations,
the actual distribution of visible matter in the Milky Way remains uncertain. Following the
approach of |31, 33, 107|, we account for these uncertainties by taking into account different
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Table 6: Constraints on the enclosed total and dark matter mass as a function of galactic
radius (after model averaging). The table gives the MAP values and the 68% (95%) credible
intervals, conditional on radius. The dark matter mass profile Mpy is shown in figure 5 and

the total mass profile Mt is shown in figure 5 and figure 9.

functional shapes available in the literature for both the disk(s) and bulge components. As
introduced in Section 2.2, for each combination of bulge and disk we compute the corre-
sponding contribution to the rotation curve. In table 7 we briefly describe the bulge and disk
morphologies adopted in this work. For further details on the derived baryonic models, we

refer the interested reader to [33, 34] and the original references.

bulge

disk

model
G2
E2*
A%
BG
/
R
BR
HG*
CM
dJ
J

specification
gaussian
exponential
truncated power law
truncated power law
gaussian plus nucleus
double ellipsoid
thin plus thick
thin plus thick
thin plus thick
thin plus thick plus halo
thin plus thick plus halo

Ref.
[35]
[35]
[55]
[56]
[57]
[58]
[36]
[59]
[60]
[61]
[62]

Table 7: Summary of bulge and disk morphologies. For further details see [33, 34]. The
configuration marked with an asterisk indicates our reference morphology.
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