485 research outputs found

    Predicting the steady state thickness of passive films in order to prevent degradations of implant

    Get PDF
    Some implants have approximately a lifetime of 15 years. The femoral stem, for example, should be made of 316L/316LN stainless steel. Fretting corrosion, friction under small displacements, should occur during human gait, due to repeated loadings and un-loadings, between stainless steel and bone for instance. Some experimental investigations of fretting corrosion have been practiced. As well known, metallic alloys and especially stainless steels are covered with a passive film that prevents from the corrosion and degradation. This passive layer of few nanometers, at ambient temperature, is the key of our civilization according to some authors. This work is dedicated to predict the passive layer thicknesses of stainless steel under fretting corrosion with a specific emphasis on the role of proteins. The model is based on the Point Defect Model (micro scale) and an update of the model on the friction process (micro-macro scale). Genetic algorithm was used for finding solution of the problem. The major results are, as expected from experimental results, albumin prevents from degradation at the lowest concentration of chlorides; an incubation time is necessary for degrading the passive film; under fretting corrosion and high concentration of chlorides the passive behavior is annihilated

    Diffractive wave guiding of hot electrons by the Au (111) herringbone reconstruction

    Full text link
    The surface potential of the herringbone reconstruction on Au(111) is known to guide surface-state electrons along the potential channels. Surprisingly, we find by scanning tunneling spectroscopy that hot electrons with kinetic energies twenty times larger than the potential amplitude (38 meV) are still guided. The efficiency even increases with kinetic energy, which is reproduced by a tight binding calculation taking the known reconstruction potential and strain into account. The guiding is explained by diffraction at the inhomogeneous electrostatic potential and strain distribution provided by the reconstruction.Comment: 10 pages, 9 figure

    Apparent rippling with honeycomb symmetry and tunable periodicity observed by scanning tunneling microscopy on suspended graphene

    Full text link
    Suspended graphene is difficult to image by scanning probe microscopy due to the inherent van-der-Waals and dielectric forces exerted by the tip which are not counteracted by a substrate. Here, we report scanning tunneling microscopy data of suspended monolayer graphene in constant-current mode revealing a surprising honeycomb structure with amplitude of 50−-200 pm and lattice constant of 10-40 nm. The apparent lattice constant is reduced by increasing the tunneling current II, but does not depend systematically on tunneling voltage VV or scan speed vscanv_{\rm scan}. The honeycomb lattice of the rippling is aligned with the atomic structure observed on supported areas, while no atomic corrugation is found on suspended areas down to the resolution of about 3−43-4 pm. We rule out that the honeycomb structure is induced by the feedback loop using a changing vscanv_{\rm scan}, that it is a simple enlargement effect of the atomic resolution as well as models predicting frozen phonons or standing phonon waves induced by the tunneling current. Albeit we currently do not have a convincing explanation for the observed effect, we expect that our intriguing results will inspire further research related to suspended graphene.Comment: 10 pages, 7 figures, modified, more detailed discussion on errors in vdW parameter

    Electrical transport and low-temperature scanning tunneling microscopy of microsoldered graphene

    Full text link
    Using the recently developed technique of microsoldering, we perform a systematic transport study of the influence of PMMA on graphene flakes revealing a doping effect of up to 3.8x10^12 1/cm^2, but a negligible influence on mobility and gate voltage induced hysteresis. Moreover, we show that the microsoldered graphene is free of contamination and exhibits a very similar intrinsic rippling as has been found for lithographically contacted flakes. Finally, we demonstrate a current induced closing of the previously found phonon gap appearing in scanning tunneling spectroscopy experiments, strongly non-linear features at higher bias probably caused by vibrations of the flake and a B-field induced double peak attributed to the 0.Landau level of graphene.Comment: 8 pages, 3 figure

    An Exploratory Investigation of Comparisons of Student Evaluations of Learning Pre and Post COVID-19 at Private and Public Universities

    Get PDF
    Although universities attempted to provide as little disruption to student learning as possible, problems arose with their responses to the COVID-19 pandemic. The current literature is rich with studies reporting experiences with the transition to the virtual learning of the pandemic era. In pursuit of the most effective learning and instructional modes to transition to in times of crisis, university administrators and faculty members need to know more regarding what worked and did not work in the initial response to the COVID- 19 crisis. Questions remain. Given the pre-COVID-19 dominance of face-to-face instruction did student opinion of online learning change based on their experiences with the mandated transitions to virtual learning? Are the perceptions different for students at private versus public and small versus large institutions? This paper reports the results of an exploratory study of these bifurcations based on an online survey of student opinion conducted in Spring 2021. The findings provide some insight to student perceptions of the efficacy of the changed learning environment experienced by the subject populations

    Fretting corrosion damage of total hip prosthesis: Friction coefficient and damage rate constant approach

    Get PDF
    International audienceThis paper analyzes friction coefficient evolution between materials related to total hip prosthesis. Fretting corrosion tests were conducted with stainless steel and poly(methyl methacrylate) interacting surfaces. In the course of fretting corrosion tests, the Coulomb friction coefficient is determined as a function of the number of cycles. It was found that the friction coefficient growth rate can be expressed as a power-law function. The influences of ionic strength, applied potential, pH, and albumin content on fretting corrosion were then investigated on the basis of the evolution of the friction coefficient. Finally, we identify the damage rate constant as being relevant for linking the mechanical and chemical parameters in the evolution of damage

    Apparent rippling with honeycomb symmetry and tunable periodicity observed by scanning tunneling microscopy on suspended graphene

    Get PDF
    Suspended graphene is difficult to image by scanning probe microscopy due to the inherent van der Waals and dielectric forces exerted by the tip, which are not counteracted by a substrate. Here, we report scanning tunneling microscopy data of suspended monolayer graphene in constant-current mode, revealing a surprising honeycomb structure with amplitude of 50-200 pm and lattice constant of 10-40 nm. The apparent lattice constant is reduced by increasing the tunneling current I, but does not depend systematically on tunneling voltage V or scan speed v(scan). The honeycomb lattice of the rippling is aligned with the atomic structure observed on supported areas, while no atomic corrugation is found on suspended areas down to the resolution of about 3-4 pm. We rule out that the honeycomb structure is induced by the feedback loop using a changing vscan, that it is a simple enlargement effect of the atomic lattice, as well as models predicting frozen phonons or standing phonon waves induced by the tunneling current. Although we currently do not have a convincing explanation for the observed effect, we expect that our intriguing results will inspire further research related to suspended graphene

    Dark matter annihilation and decay profiles for the Reticulum II dwarf spheroidal galaxy

    Full text link
    The dwarf spheroidal galaxies (dSph) of the Milky Way are among the most attractive targets for indirect searches of dark matter. In this work, we reconstruct the dark matter annihilation (J-factor) and decay profiles for the newly discovered dSph Reticulum II. Using an optimized spherical Jeans analysis of kinematic data obtained from the Michigan/Magellan Fiber System (M2FS), we find Reticulum II's J-factor to be among the largest of any Milky Way dSph. We have checked the robustness of this result against several ingredients of the analysis. Unless it suffers from tidal disruption or significant inflation of its velocity dispersion from binary stars, Reticulum II may provide a unique window on dark matter particle properties.Comment: 5 pages, 4 figures. Match the ApJL accepted versio

    Dark matter annihilation and decay in dwarf spheroidal galaxies: The classical and ultrafaint dSphs

    Full text link
    Dwarf spheroidal (dSph) galaxies are prime targets for present and future gamma-ray telescopes hunting for indirect signals of particle dark matter. The interpretation of the data requires careful assessment of their dark matter content in order to derive robust constraints on candidate relic particles. Here, we use an optimised spherical Jeans analysis to reconstruct the `astrophysical factor' for both annihilating and decaying dark matter in 21 known dSphs. Improvements with respect to previous works are: (i) the use of more flexible luminosity and anisotropy profiles to minimise biases, (ii) the use of weak priors tailored on extensive sets of contamination-free mock data to improve the confidence intervals, (iii) systematic cross-checks of binned and unbinned analyses on mock and real data, and (iv) the use of mock data including stellar contamination to test the impact on reconstructed signals. Our analysis provides updated values for the dark matter content of 8 `classical' and 13 `ultrafaint' dSphs, with the quoted uncertainties directly linked to the sample size; the more flexible parametrisation we use results in changes compared to previous calculations. This translates into our ranking of potentially-brightest and most robust targets---viz., Ursa Minor, Draco, Sculptor---, and of the more promising, but uncertain targets---viz., Ursa Major 2, Coma---for annihilating dark matter. Our analysis of Segue 1 is extremely sensitive to whether we include or exclude a few marginal member stars, making this target one of the most uncertain. Our analysis illustrates challenges that will need to be addressed when inferring the dark matter content of new `ultrafaint' satellites that are beginning to be discovered in southern sky surveys.Comment: 19 pages, 14 figures, submitted to MNRAS. Supplementary material available on reques

    Leading issues in business research methods volume 2

    Get PDF
    In selecting the current papers, the editors have sought to cover a representative set of papers from both quantitative and qualitative strands. Papers that set out what research methods were adopted, their epistemological and philosophical positions, considerations of alternative research methods (interviews, surveys, the Web, focus groups
) and epistemological positions (positivism, interpretivism, constructivism
), why these might not have been chosen and what contributions were made to the field have generally been selected for the current volume. It is the editors’ view that established and early career researchers as well as students learning to do research will benefit from the selection
    • 

    corecore