723 research outputs found

    Suitable Steels for Welded Bridges and Buildings

    Get PDF

    Choosing Whether to Lead, Lag, or Match the Market

    Get PDF
    This paper demonstrates how cost-benefit analysis can be used to develop a company\u27s pay strategy. Using the case of Punk\u27s Backyard Grill, a new venture starting in the Washington, DC area, quantitative aspects of Utility Analysis are combined with the judgments of the company\u27s owners to provide estimates of the value associated with seven pay strategies. Results showed that leading the market by 5% produced the greatest return. Sensitivity analysis is used to see how drastically estimates changes owing to the nature of the paper\u27s estimates. This methods presented in this paper should help others making pay policy decisions use cost-benefit analysis as part of their decision process

    Human Resources and the Resource Based View of the Firm

    Get PDF
    The resource-based view (RBV) of the firm has influenced the field of strategic human resource management (SHRM) in a number of ways. This paper explores the impact of the RBV on the theoretical and empirical development of SHRM. It explores how the fields of strategy and SHRM are beginning to converge around a number of issues, and proposes a number of implications of this convergence

    Occupational sex-segregation, specialized human capital and wages: evidence from Britain

    Get PDF
    Female-dominated occupations are poorly paid, but there is disagreement about why. Sociological explanations argue that pay in such occupations is low because society undervalues 'women's work', while economic theory argues that this is due to scant requirements for specialized skills. This article sheds light over these debates by examining the impact of occupational feminization on wages in Britain and exploring the mechanisms that produce it, using innovative statistical models that account for both observable and unobservable skill. Results confirm that occupational sex-segregation explains a sizeable portion of the gender wage gap and that wages in female-dominated occupations are lower than wages in other occupations. Inconsistent with human capital theory, low pay in female-dominated occupations cannot be explained fully by low skill specialization or by observable or unobservable characteristics of their workers. Remaining wage penalties in such occupations are consequently taken as evidence of institutional devaluation of 'women's work'

    The compositional and evolutionary logic of metabolism

    Full text link
    Metabolism displays striking and robust regularities in the forms of modularity and hierarchy, whose composition may be compactly described. This renders metabolic architecture comprehensible as a system, and suggests the order in which layers of that system emerged. Metabolism also serves as the foundation in other hierarchies, at least up to cellular integration including bioenergetics and molecular replication, and trophic ecology. The recapitulation of patterns first seen in metabolism, in these higher levels, suggests metabolism as a source of causation or constraint on many forms of organization in the biosphere. We identify as modules widely reused subsets of chemicals, reactions, or functions, each with a conserved internal structure. At the small molecule substrate level, module boundaries are generally associated with the most complex reaction mechanisms and the most conserved enzymes. Cofactors form a structurally and functionally distinctive control layer over the small-molecule substrate. Complex cofactors are often used at module boundaries of the substrate level, while simpler ones participate in widely used reactions. Cofactor functions thus act as "keys" that incorporate classes of organic reactions within biochemistry. The same modules that organize the compositional diversity of metabolism are argued to have governed long-term evolution. Early evolution of core metabolism, especially carbon-fixation, appears to have required few innovations among a small number of conserved modules, to produce adaptations to simple biogeochemical changes of environment. We demonstrate these features of metabolism at several levels of hierarchy, beginning with the small-molecule substrate and network architecture, continuing with cofactors and key conserved reactions, and culminating in the aggregation of multiple diverse physical and biochemical processes in cells.Comment: 56 pages, 28 figure

    Towards Critical Human Resource Management Education (CHRME): a sociological imagination approach

    Get PDF
    This article explores the professional standing of the discipline of human resource management (HRM) in business schools in the post-financial crisis period. Using the prism of the sociological imagination, it explains the learning to be gained from teaching HRM that is sensitive to context, power and inequality. The context of crisis provides ideal circumstances for critical reflexivity and for integrating wider societal issues into the HRM curriculum. It argues for Critical Human Resource Management Education or CHRME, which, if adopted, would be an antidote to prescriptive practitioner-oriented approaches. It proceeds to set out five principles for CHRME: using the ‘sociological imagination’ prism; emphasizing the social nature of the employment relationship; investigating paradox within HRM; designing learning outcomes that encourage students to appraise HRM outcomes critically; and reflexive critique. Crucially, CHRME offers a teaching strategy that does not neglect or marginalize the reality of structural power, inequality and employee work experiences

    Commodification of transformation discourses and post-apartheid institutional identities at three South African universities

    Get PDF
    Using mission statements from the UCT, UWC and Stellenbosch University (South Africa), we explore how the three universities have rematerialised prior discourses to rebrand their identities as dictated by contemporary national and global aspirations. We reveal how the universities have recontextualised the experiences and discourses of liberation struggle and the new government's post-apartheid social transformation discourses to construct distinctive identities that are locally relevant and globally aspiring. This has led to the semiotic refiguring of universities from spatial edifices of racially based unequal education, to equal opportunity institutions of higher learning, and to the blurring of historical boundaries between these universities. We conclude that the universities have reconstructed distinct and recognisable identities which speak to a segregated past, but with a post-apartheid voice of equity and redress.IS

    SABRE: A bio-inspired fault-tolerant electronic architecture

    Get PDF
    As electronic devices become increasingly complex, ensuring their reliable, fault-free operation is becoming correspondingly more challenging. It can be observed that, in spite of their complexity, biological systems are highly reliable and fault tolerant. Hence, we are motivated to take inspiration for biological systems in the design of electronic ones. In SABRE (self-healing cellular architectures for biologically inspired highly reliable electronic systems), we have designed a bio-inspired fault-tolerant hierarchical architecture for this purpose. As in biology, the foundation for the whole system is cellular in nature, with each cell able to detect faults in its operation and trigger intra-cellular or extra-cellular repair as required. At the next level in the hierarchy, arrays of cells are configured and controlled as function units in a transport triggered architecture (TTA), which is able to perform partial-dynamic reconfiguration to rectify problems that cannot be solved at the cellular level. Each TTA is, in turn, part of a larger multi-processor system which employs coarser grain reconfiguration to tolerate faults that cause a processor to fail. In this paper, we describe the details of operation of each layer of the SABRE hierarchy, and how these layers interact to provide a high systemic level of fault tolerance. © 2013 IOP Publishing Ltd

    Reconstructing terrestrial nutrient cycling using stable nitrogen isotopes in wood

    Get PDF
    Although recent anthropogenic effects on the global nitrogen (N) cycle have been significant, the consequences of increased anthropogenic N on terrestrial ecosystems are unclear. Studies of the impact of increased reactive N on forest ecosystems—impacts on hydrologic and gaseous loss pathways, retention capacity, and even net primary productivity— have been particularly limited by a lack of long-term baseline biogeochemical data. Stable nitrogen isotope analysis (ratio of ¹⁵N to ¹⁴N, termed δ¹⁵N) of wood chronologies offers the potential to address changes in ecosystem N cycling on millennial timescales and across broad geographic regions. Currently, nearly 50 studies have been published utilizing wood δ¹⁵N records; however, there are significant differences in study design and data interpretation. Here, we identify four categories of wood δ¹⁵N studies, summarize the common themes and primary findings of each category, identify gaps in the spatial and temporal scope of current wood δ¹⁵N chronologies, and synthesize methodological frameworks for future research by presenting eight suggestions for common methodological approaches and enhanced integration across studies. Wood δ¹⁵N records have the potential to provide valuable information for interpreting modern biogeochemical cycling. This review serves to advance the utility of this technique for long-term biogeochemical reconstructions

    Evidence for a Common Mechanism of SIRT1 Regulation by Allosteric Activators

    Get PDF
    A molecule that treats multiple age-related diseases would have a major impact on global health and economics. The SIRT1 deacetylase has drawn attention in this regard as a target for drug design. Yet controversy exists around the mechanism of sirtuin-activating compounds (STACs). We found that specific hydrophobic motifs found in SIRT1 substrates such as PGC-1α and FOXO3a facilitate SIRT1 activation by STACs. A single amino acid in SIRT1, Glu[superscript 230], located in a structured N-terminal domain, was critical for activation by all previously reported STAC scaffolds and a new class of chemically distinct activators. In primary cells reconstituted with activation-defective SIRT1, the metabolic effects of STACs were blocked. Thus, SIRT1 can be directly activated through an allosteric mechanism common to chemically diverse STACs.Glenn Foundation for Medical ResearchEllison Medical FoundationJuvenile Diabetes Research Foundation InternationalUnited Mitochondrial Disease FoundationNational Institutes of Health (U.S.)National Institute of Allergy and Infectious Diseases (U.S.
    corecore