664 research outputs found

    Multi-channel ground-penetrating radar to explore spatial variations in thaw depth and moisture content in the active layer of a permafrost site

    Get PDF
    Multi-channel ground-penetrating radar (GPR) was applied at a permafrost site on the Tibetan Plateau to investigate the influence of surface properties and soil texture on the late-summer thaw depth and average soil moisture content of the active layer. Measurements were conducted on an approximately 85 × 60 m<sup>2</sup> sized area with surface and soil textural properties that ranged from medium to coarse textured bare soil to finer textured, sparsely vegetated areas covered with fine, wind blown sand, and it included the bed of a gravel road. The survey allowed a clear differentiation of the various units. It showed (i) a shallow thaw depth and low average soil moisture content below the sand-covered, vegetated area, (ii) an intermediate thaw depth and high average soil moisture content along the gravel road, and (iii) an intermediate to deep thaw depth and low to intermediate average soil moisture content in the bare soil terrain. From our measurements, we found hypotheses for the permafrost processes at this site leading to the observed late-summer thaw depth and soil moisture conditions. The study clearly indicates the complicated interactions between surface and subsurface state variables and processes in this environment. Multi-channel GPR is an operational technology to efficiently study such a system at scales varying from a few meters to a few kilometers

    Relation between composition and vacant oxygen sites in the mixed ionicelectronic conductors La5.4W1 yMyO12 delta M Mo, Re; 0 lt; y lt; 0.2 and their mother compound La6 xWO12 delta 0.4 lt; x lt; 0.8

    Get PDF
    A detailed analysis of specimen composition, water uptake and their interrelationship in the systems La6 xWO12 amp; 948; 0.4 amp; 8804; x amp; 8804;0.8 and La6 xW1 yMyO12 amp; 948; 0 amp; 8804;y amp; 8804;0.2; M Mo, Re is presented. The three specimen series were investigated in dry and wet D2O conditions. A systematic trend in mass loss and onset temperature variation was observed in La6 xWO12 amp; 948; 0.4 amp; 8804;x amp; 8804;0.8 . Even very small amounts lt; 1 wt of secondary phases were found to notably modify the specimen s water uptake and onset temperature of mass loss. The theoretical model for vacancy concentration available was used to calculate the vacant oxygen sites starting from mass loss values determined by thermogravimetry. A discrepancy between the calculated and observed concentration of vacant oxygen sites is observed for all three systems. The effect of substitution of W by Re or Mo on the vacancy amount is explained taking into account diffraction measurements and information on the oxidation state of the substituting elements Mo and R

    Promotion of mixed protonic–electronic transport in La5.4_{5.4}WO11.1δ_{11.1− δ} membranes under H2_2S atmospheres

    Get PDF
    Catalytic membrane reactors (CMR) based on H2_2-separation membranes can improve the performance of thermodynamically-limited reactions such as high-pressure steam methane reforming, ammonia cracking, non-oxidative aromatics production, and water gas shift reaction (WGS). In these industrial processes, the membrane surfaces are typically exposed to steam, CO2_2, CO, H2_2S, and hydrocarbons in combination with high temperatures. Therefore, the membrane materials require long-term thermo-chemical stability under the mentioned conditions. Stability in H2_2S is of outstanding importance since its presence, even at ppm level, gives rise to substantial surface poisoning and decomposition of most materials. Here we characterize the influence of H2_2S on the crystalline structure, lattice composition, and hydrogen-transport properties of La5.4_{5.4}WO11.1δ_{11.1−δ}, one of the reference protonic membrane materials. The incorporation of sulfide ions in the crystal lattice is ascertained from XRD, XPS, FESEM, WDS, EDS, and FIB-SIMS analyses. UV-vis spectroscopy and EIS measurements illustrate the effect of the incorporated sulfur in the transport properties, i.e., vigorously promoting the electronic conductivity mediated by the concurrent partial reduction of tungsten cations (W6+^{6+}). The rise in electronic conductivity allowed an H2_2 flux of 0.042 mL cm2^{−2} min1^{−1} to be reached at 700 °C for a ∼700 μm-thick membrane, in contrast with negligible H2_2 permeation in H2_2S-free conditions

    Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA

    Get PDF
    An investigation of the hadronic final state in diffractive and non--diffractive deep--inelastic electron--proton scattering at HERA is presented, where diffractive data are selected experimentally by demanding a large gap in pseudo --rapidity around the proton remnant direction. The transverse energy flow in the hadronic final state is evaluated using a set of estimators which quantify topological properties. Using available Monte Carlo QCD calculations, it is demonstrated that the final state in diffractive DIS exhibits the features expected if the interaction is interpreted as the scattering of an electron off a current quark with associated effects of perturbative QCD. A model in which deep--inelastic diffraction is taken to be the exchange of a pomeron with partonic structure is found to reproduce the measurements well. Models for deep--inelastic epep scattering, in which a sizeable diffractive contribution is present because of non--perturbative effects in the production of the hadronic final state, reproduce the general tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil

    A Search for Selectrons and Squarks at HERA

    Get PDF
    Data from electron-proton collisions at a center-of-mass energy of 300 GeV are used for a search for selectrons and squarks within the framework of the minimal supersymmetric model. The decays of selectrons and squarks into the lightest supersymmetric particle lead to final states with an electron and hadrons accompanied by large missing energy and transverse momentum. No signal is found and new bounds on the existence of these particles are derived. At 95% confidence level the excluded region extends to 65 GeV for selectron and squark masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure
    corecore