21 research outputs found

    Non‐Invasive Assessment of the Embryo Viability via the Analysis of the Culture Media

    Get PDF
    Infertility in recent years is a growing public health issue throughout the developed world. Assisted reproductive techniques, especially in vitro fertilization, have the potential to partially overcome the low natural reproductive ratio. Nowadays, single embryo transfer gains grounds in clinical practice, urging the development of more reliable methods for selecting the best embryo. In the traditional clinical practice, embryos are selected for transfer based on morphological evaluation. In vitro culturing of embryos also provides a very important material for further non‐invasive evaluation by means of examining a biomarker in the spent culture medium (SEC). Current measure methods concentrate on the metabolomic activity of the developing embryos none compounds. These studies are mainly utilizing the tools of modern analytics and proteomics. In a paper published by Montskó et al. in 2015, the alpha‐1 chain of the human haptoglobin molecule was described as a quantitative biomarker of embryo viability. In a series of retrospective, blind experiments achieved more than 50% success rate. This chapter summarizes the currently available metabolomic and proteomic approaches as the non‐invasive molecular assessment of embryo viability

    Flavonoid diosmetin increases ATP levels in kidney cells and relieves ATP depleting effect of ochratoxin A

    Get PDF
    Diosmetin (DIOS) is a flavone aglycone commonly occurring in citrus species and olive leaves, in addition it is one of the active ingredients of some medications. Based on both in vitro and in vivo studies several beneficial effects are attributed to DIOS but the biochemical background of its action seems to be complex and it has not been completely explored yet. Previous investigations suggest that most of the flavonoid aglycones have negative effect on ATP synthesis in a dose dependent manner. In our study 17 flavonoids were tested and interestingly DIOS caused a significant elevation of intracellular ATP levels after 6- and 12-h incubation in MDCK kidney cells. In order to understand the mechanism of action, intracellular ATP and protein levels, ATP/ADP ratio, cell viability and ROS levels were determined after DIOS treatment. In addition, impacts of different enzyme inhibitors and effect of DIOS on isolated rat liver mitochondria were also tested. Finally, the influence of DIOS on the ATP depleting effect of the mycotoxin, ochratoxin A was also investigated. Our major conclusions are the followings: DIOS increases intracellular ATP levels both in kidney and in liver cells. Inhibition of glycolysis or citric acid cycle does not decrease the observed effect. DIOS-induced elevation of ATP levels is completely abolished by the inhibition of ATP synthase. DIOS is able to completely reverse the ATP-depleting effect of the mycotoxin, ochratoxin A. Most probably the DIOS-induced impact on ATP system does not originate from the antioxidant property of DIOS. Based on our findings DIOS may be promising agent to positively influence ATP depletion caused by some metabolic poisons

    Fractalkine Regulates HEC-1A/JEG-3 Interaction by Influencing the Expression of Implantation-Related Genes in an In Vitro Co-Culture Model

    No full text
    Embryo implantation is a complex process regulated by a network of biological molecules. Recently, it has been described that fractalkine (CX3CL1, FKN) might have an important role in the feto–maternal interaction during gestation since the trophoblast cells express fractalkine receptor (CX3CR1) and the endometrium cells secrete fractalkine. CX3CR1 controls three major signalling pathways, PLC-PKC pathway, PI3K/AKT/NFκB pathway and Ras-mitogen-activated protein kinases (MAPK) pathways regulating proliferation, growth, migration and apoptosis. In this study, we focused on the molecular mechanisms of FKN treatment influencing the expression of implantation-related genes in trophoblast cells (JEG-3) both in mono-and in co-culture models. Our results reveal that FKN acted in a concentration and time dependent manner on JEG-3 cells. FKN seemed to operate as a positive regulator of implantation via changing the action of progesterone receptor (PR), activin receptor and bone morphogenetic protein receptor (BMPR). FKN modified also the expression of matrix metalloproteinase 2 and 9 controlling invasion. The presence of HEC-1A endometrial cells in the co-culture contributed to the effect of fractalkine on JEG-3 cells regulating implantation. The results suggest that FKN may contribute to the successful attachment and implantation of embryo

    Induction of mitochondrial destabilization and necrotic cell death by apolar mitochondria-directed SOD mimetics

    No full text
    In this paper, we present evidence, for the first time, that increasing the lipophilicity of mitochondria targeting SOD mimetics reverses their cytoprotective properties, destabilizing the mitochondrial membrane system and promoting cell death. A new mitochondria-directed apolar SOD mimetic, HO-3814, was found to provoke mitochondrial swelling and loss of mitochondrial membrane potential, and these effects were not inhibited by cyclosporine A. HO-3814-induced cell death was predominantly necrotic, caspase-independent, and not affected by mitochondrial permeability transition inhibitors or cyclophilin D-suppression, inhibitors of mitogen-activated protein kinases or Akt, or various antioxidants. In contrast, Bcl-2 overexpression diminished the effects of HO-3814
    corecore