44 research outputs found
Chaotic memristor
We suggest and experimentally demonstrate a chaotic memory resistor
(memristor). The core of our approach is to use a resistive system whose
equations of motion for its internal state variables are similar to those
describing a particle in a multi-well potential. Using a memristor emulator,
the chaotic memristor is realized and its chaotic properties are measured. A
Poincar\'{e} plot showing chaos is presented for a simple nonautonomous circuit
involving only a voltage source directly connected in series to a memristor and
a standard resistor. We also explore theoretically some details of this system,
plotting the attractor and calculating Lyapunov exponents. The multi-well
potential used resembles that of many nanoscale memristive devices, suggesting
the possibility of chaotic dynamics in other existing memristive systems.Comment: Applied Physics A (in press
Drop-coated Titanium Dioxide Memristors
The fabrication of memristors by drop-coating sol-gel Ti(OH) solution
onto either aluminium foil or sputter-coated aluminium on plastic is presented.
The gel layer is thick, 37m, but both devices exhibit good memristance I-V
profiles. The drop coated aluminium foil memristors compare favourably with the
sputter-coated ones, demonstrating an expansion in the accessibility of
memristor fabrication. A comparison between aluminium and gold for use as the
sputter-coated electrodes shows that aluminium is the better choice as using
gold leads to device failure. The devices do not require a forming step.Comment: 9 figures. arXiv admin note: substantial text overlap with
arXiv:1106.629
Status and Prospects of ZnO-Based Resistive Switching Memory Devices
In the advancement of the semiconductor device technology, ZnO could be a prospective alternative than the other metal oxides for its versatility and huge applications in different aspects. In this review, a thorough overview on ZnO for the application of resistive switching memory (RRAM) devices has been conducted. Various efforts that have been made to investigate and modulate the switching characteristics of ZnO-based switching memory devices are discussed. The use of ZnO layer in different structure, the different types of filament formation, and the different types of switching including complementary switching are reported. By considering the huge interest of transparent devices, this review gives the concrete overview of the present status and prospects of transparent RRAM devices based on ZnO. ZnO-based RRAM can be used for flexible memory devices, which is also covered here. Another challenge in ZnO-based RRAM is that the realization of ultra-thin and low power devices. Nevertheless, ZnO not only offers decent memory properties but also has a unique potential to be used as multifunctional nonvolatile memory devices. The impact of electrode materials, metal doping, stack structures, transparency, and flexibility on resistive switching properties and switching parameters of ZnO-based resistive switching memory devices are briefly compared. This review also covers the different nanostructured-based emerging resistive switching memory devices for low power scalable devices. It may give a valuable insight on developing ZnO-based RRAM and also should encourage researchers to overcome the challenges