231 research outputs found

    Isotropic Solutions of the Einstein-Liouville Equations

    Get PDF
    The gravitational field generated by a gas whose one-particle distribution function obeys the Liouville equation is examined under the following assumptions: First, the distribution is locally isotropic in momentum space with respect to some world-velocity field; second, if the particles have rest-mass zero, the gas is irrotational. It is shown that the model is then either stationary or a Robertson-Walker model. The time dependence of the radius in the Robertson-Walker models is given in terms of integrals containing the distribution function

    Improving Corn Production in Southeast Kansas

    Get PDF
    Corn performance and yield varies as a function of the growing environment and soil properties. Components contributing to yield in corn were examined through on-farm measurements of soil properties in southeast Kansas. Environmental variability between the 2013, 2014, and 2015 growing seasons contributed to changes in yield. Management can also impact the amount of harvested yield

    Handling uncertainties in modelling manufacturing processes with hybrid swarm intelligence

    Get PDF
    Seldom has research regarding manufacturing process modelling considered the two common types ofuncertainties which are caused by randomness as in material properties and by fuzziness as in the inexact knowledge in manufacturing processes. Accuracies of process models can be downgraded if these uncertainties are ignored in the development of process models. In this paper, a hybrid swarm intelligence algorithm for developing process models which intends to achieve significant accuracies for manufacturing process modelling by addressing these two uncertainties is proposed. The hybrid swarm intelligence algorithm first applies the mechanism of particle swarm optimisation to generate structures of process models in polynomial forms, and then it applies the mechanism of fuzzy least square regression algorithm to determine fuzzy coefficients on polynomials so as to address the two uncertainties, fuzziness and randomness. Apart from addressing the two uncertainties, the common feature in manufacturing processes, nonlinearities between process parameters, which are not inevitable in manufacturing processes, can also be addressed. The effectiveness of the hybrid swarm algorithm is demonstrated by modelling of the solder paste dispensing process

    A Three Monoclonal Antibody Combination Potently Neutralizes Multiple Botulinum Neurotoxin Serotype E Subtypes.

    Get PDF
    Human botulism is most commonly caused by botulinum neurotoxin (BoNT) serotypes A, B, and E. For this work, we sought to develop a human monoclonal antibody (mAb)-based antitoxin capable of binding and neutralizing multiple subtypes of BoNT/E. Libraries of yeast-displayed single chain Fv (scFv) antibodies were created from the heavy and light chain variable region genes of humans immunized with pentavalent-toxoid- and BoNT/E-binding scFv isolated by Fluorescence-Activated Cell Sorting (FACS). A total of 10 scFv were isolated that bound one or more BoNT/E subtypes with nanomolar-level equilibrium dissociation constants (KD). By diversifying the V-regions of the lead mAbs and selecting for cross-reactivity, we generated three scFv that bound all four BoNT/E subtypes tested at three non-overlapping epitopes. The scFvs were converted to IgG that had KD values for the different BoNT/E subtypes ranging from 9.7 nM to 2.28 pM. An equimolar combination of the three mAbs was able to potently neutralize BoNT/E1, BoNT/E3, and BoNT/E4 in a mouse neutralization assay. The mAbs have potential utility as therapeutics and as diagnostics capable of recognizing multiple BoNT/E subtypes. A derivative of the three-antibody combination (NTM-1633) is in pre-clinical development with an investigational new drug (IND) application filing expected in 2018

    Double-Pionic Fusion of Nuclear Systems and the ABCEffect -- Aproaching a Puzzle by Exclusive and Kinematically Complete Measurements

    Get PDF
    The ABC effect - a puzzling low-mass enhancement in the ππ\pi\pi invariant mass spectrum - is well-known from inclusive measurements of two-pion production in nuclear fusion reactions. Here we report on first exclusive and kinematically complete measurements of the most basic double pionic fusion reaction pndπ0π0pn \to d \pi^0\pi^0 at 1.03 and 1.35 GeV. The measurements, which have been carried out at CELSIUS-WASA, reveal the ABC effect to be a (ππ)I=L=0(\pi\pi)_{I=L=0} channel phenomenon associated with both a resonance-like energy dependence in the integral cross section and the formation of a ΔΔ\Delta\Delta system in the intermediate state. A corresponding simple s-channel resonance ansatz provides a surprisingly good description of the data

    Extraction and inhibition of enzymatic activity of botulinum neurotoxins /B1, /B2, /B3, /B4, and /B5 by a panel of monoclonal anti-BoNT/B antibodies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Botulism is caused by botulinum neurotoxins (BoNTs), extremely toxic proteins which can induce respiratory failure leading to long-term intensive care or death. Treatment for botulism includes administration of antitoxins, which must be administered early in the course of the intoxication; therefore, rapid determination of human exposure to BoNT is an important public health goal. In previous work, our laboratory reported on Endopep-MS, a mass spectrometry-based activity method for detecting and differentiating BoNT/A, /B, /E, and /F in clinical samples. We also demonstrated that antibody-capture is effective for purification and concentration of BoNTs from complex matrices such as clinical samples. However, some antibodies inhibit or neutralize the enzymatic activity of BoNT, so the choice of antibody for toxin extraction is critical.</p> <p>Results</p> <p>In this work, we evaluated 24 anti-BoNT/B monoclonal antibodies (mAbs) for their ability to inhibit the <it>in vitro </it>activity of BoNT/B1, /B2, /B3, /B4, and /B5 and to extract those toxins. Among the mAbs, there were significant differences in ability to extract BoNT/B subtypes and inhibitory effect on BoNT catalytic activity. Some of the mAbs tested enhanced the <it>in vitro </it>light chain activity of BoNT/B, suggesting that BoNT/B may undergo conformational change upon binding some mAbs.</p> <p>Conclusions</p> <p>In addition to determining <it>in vitro </it>inhibition abilities of a panel of mAbs against BoNT/B1-/B5, this work has determined B12.2 and 2B18.2 to be the best mAbs for sample preparation before Endopep-MS. These mAb characterizations also have the potential to assist with mechanistic studies of BoNT/B protection and treatment, which is important for studying alternative therapeutics for botulism.</p

    Design of a Ruthenium-Cytochrome c Derivative to Measure Electron Transfer to the Initial Acceptor in Cytochrome c Oxidase

    Get PDF
    A ruthenium-labeled cytochrome c derivative was prepared to meet two design criteria: the ruthenium group must transfer an electron rapidly to the heme group, but not alter the interaction with cytochrome c oxidase. Site-directed mutagenesis was used to replace His39 on the backside of yeast C102T iso-1-cytochrome c with a cysteine residue, and the single sulfhydryl group was labeled with (4-bromomethyl-4' methylbipyridine) (bis-bipyridine)ruthenium(II) to form Ru-39-cytochrome c (cyt c). There is an efficient pathway for electron transfer from the ruthenium group to the heme group of Ru-39-cyt c comprising 13 covalent bonds and one hydrogen bond. Electron transfer from the excited state Ru(II*) to ferric heme c occurred with a rate constant of (6.0 +/- 2.0) x 10(5) s-1, followed by electron transfer from ferrous heme c to Ru(III) with a rate constant of (1.0 +/- 0.2) x 10(6) s-1. Laser excitation of a complex between Ru-39-cyt c and beef cytochrome c oxidase in low ionic strength buffer (5 mM phosphate, pH7) resulted in electron transfer from photoreduced heme c to CuA with a rate constant of (6 +/- 2) x 10(4) s-1, followed by electron transfer from CuA to heme a with a rate constant of (1.8 +/- 0.3) x 10(4) s-1. Increasing the ionic strength to 100 mM leads to bimolecular kinetics as the complex is dissociated. The second-order rate constant is (2.5 +/- 0.4) x 10(7) M-1s-1 at 230 mM ionic strength, nearly the same as that of wild-type iso-1-cytochrome c

    Extraction and Inhibition of Enzymatic Activity of Botulinum Neurotoxins/A1, /A2, and /A3 by a Panel of Monoclonal Anti-BoNT/A Antibodies

    Get PDF
    Botulinum neurotoxins (BoNTs) are extremely potent toxins that are capable of causing death or respiratory failure leading to long-term intensive care. Treatment includes serotype-specific antitoxins, which must be administered early in the course of the intoxication. Rapidly determining human exposure to BoNT is an important public health goal. In previous work, our laboratory focused on developing Endopep-MS, a mass spectrometry-based endopeptidase method for detecting and differentiating BoNT/A–G serotypes in buffer and BoNT/A, /B, /E, and /F in clinical samples. We have previously reported the effectiveness of antibody-capture to purify and concentrate BoNTs from complex matrices, such as clinical samples. Because some antibodies inhibit or neutralize the activity of BoNT, the choice of antibody with which to extract the toxin is critical. In this work, we evaluated a panel of 16 anti-BoNT/A monoclonal antibodies (mAbs) for their ability to inhibit the in vitro activity of BoNT/A1, /A2, and /A3 complex as well as the recombinant LC of A1. We also evaluated the same antibody panel for the ability to extract BoNT/A1, /A2, and /A3. Among the mAbs, there were significant differences in extraction efficiency, ability to extract BoNT/A subtypes, and inhibitory effect on BoNT catalytic activity. The mAbs binding the C-terminal portion of the BoNT/A heavy chain had optimal properties for use in the Endopep-MS assay
    corecore