49 research outputs found

    Effects of model membranes on lysozyme amyloid aggregation

    Get PDF
    Abstract The study of the interaction between lipid membranes and amyloidogenic peptides is a turning point for understanding the processes involving the cytotoxicity of peptides involved in neurodegenerative diseases. In this work, we perform an experimental study of model membrane–lysozyme interaction to understand how the formation of amyloid fibrils can be affected by the presence of polar and zwitterionic phospholipid molecules (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine [POPC] and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol [POPG]). The study was conducted above and below the critical micellar concentration (CMC) using dynamic light scattering (DLS), atomic force microscopy (AFM), UV–Vis spectrophotometry, and the quartz crystal microbalance (QCM). Our results show that the presence of phospholipids appears to be a factor favoring the formation of amyloid aggregates. Spectrophotometric and DLS data revealed that the quantity of β {\rm{\beta }} -structure increases in the presence of POPG and POPC at different concentrations. The presence of POPG and POPC increases the speed of the nucleation process, without altering the overall structures of the fibrillar final products

    Softness Matters: Effects of Compression on the Behavior of Adsorbed Microgels at Interfaces

    Full text link
    Deformable colloids and macromolecules adsorb at interfaces, as they decrease the interfacial energy between the two media. The deformability, or softness, of these particles plays a pivotal role in the properties of the interface. In this study, we employ a comprehensive \emph{in situ} approach, combining neutron reflectometry with molecular dynamics simulations, to thoroughly examine the profound influence of softness on the structure of microgel Langmuir monolayers under compression. Lateral compression of both hard and soft microgel particle monolayers induces substantial structural alterations, leading to an amplified protrusion of the microgels into the aqueous phase. However, a critical distinction emerges: hard microgels are pushed away from the interface, in stark contrast to the soft ones, which remain steadfastly anchored to it. Concurrently, on the air-exposed side of the monolayer, lateral compression induces a flattening of the surface of the hard monolayer. This phenomenon is not observed for the soft particles as the monolayer is already extremely flat even in the absence of compression. These findings significantly advance our understanding of the pivotal role of softness on both the equilibrium phase behavior of the monolayer and its effect when soft colloids are used as stabilizers of responsive interfaces and emulsions

    Nano-in-Nano Approach for Enzyme Immobilization Based on Block Copolymers

    Get PDF
    We set up a facile approach for fabrication of supports with tailored nanoporosity for immobilization of enzymes. To this aim block copolymers (BCPs) self-assembly has been used to prepare nanostructured thin films with well-defined architecture containing pores of tailorable size delimited by walls with tailorable degree of hydrophilicity. In particular, we employed a mixture of polystyrene-block-poly(l-lactide) (PS-PLLA) and polystyrene-block-poly(ethylene oxide) (PS-PEO) diblock copolymers to generate thin films with a lamellar morphology consisting of PS lamellar domains alternating with mixed PEO/PLLA blocks lamellar domains. Selective basic hydrolysis of the PLLA blocks generates thin films, patterned with nanometric channels containing hydrophilic PEO chains pending from PS walls. The shape and size of the channels and the degree of hydrophilicity of the pores depend on the relative length of the blocks, the molecular mass of the BCPs, and the composition of the mixture. The strength of our approach is demonstrated in the case of physical adsorption of the hemoprotein peroxidase from horseradish (HRP) using 2,2?-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) with H2O2 as substrate. The large surface area, the tailored pore sizes, and the functionalization with hydrophilic PEO blocks make the designed nanostructured materials suitable supports for the nanoconfinement of HRP biomolecules endowed with high catalytic performance, no mass-transfer limitations, and long-term stability

    Aurore

    No full text

    Phase Transitions in a Single Supported Phospholipid Bilayer: Real-Time Determination by Neutron Reflectometry

    No full text
    Time- and temperature-resolved neutron reflectometry allowed us to perform the real-time characteri- zation of the structural changes taking place across phase transitions in solid supported-lipid bilayers (SLBs). We identified the presence of an isothermal phase transition, characterized by a symmetrical rearrangement of lipid molecules in both bilayer leaflets, followed by the main thermotropic phase transition, and characterized by an independent melting of the two leaflets. We demonstrated that the presence of a substrate increases the enthalpy of melting by the same amount for both SLB leaflets with respect to the values reported for freestanding bilayers. These results are highly relevant for the further understanding of cooperative structural dynamics in SLBs and for the investigation of thermally activated processes such as the transmembrane lipid translocation (flip flop)
    corecore