4,171 research outputs found

    A piloted simulator study on augmentation systems to improve helicopter flying qualities in terrain flight

    Get PDF
    Four basic single-rotor helicopters, one teetering, on articulated, and two hingeless, which were found to have a variety of major deficiencies in a previous fixed-based simulator study, were selected as baseline configurations. The stability and control augmentation systems (SCAS) include simple control augmentation systems to decouple pitch and yaw responses due to collective input and to quicken the pitch and roll control responses; SCAS of rate-command type designed to optimize the sensitivity and damping and to decouple the pitch-roll due to aircraft angular tate; and attitude-command type SCAS. Pilot ratings and commentary are presented as well as performance data related to the task. SCAS control usages and their gain levels associated with specific rotor types are also discussed

    Effects of rotor parameter variations on handling qualities of unaugmented helicopters in simulated terrain flight

    Get PDF
    A coordinated analysis and ground simulator experiment was performed to investigate the effects on single rotor helicopter handling qualities of systematic variations in the main rotor hinge restraint, hub hinge offset, pitch-flap coupling, and blade lock number. Teetering rotor, articulated rotor, and hingeless rotor helicopters were evaluated by research pilots in special low level flying tasks involving obstacle avoidance at 60 to 100 knots airspeed. The results of the experiment are in the form of pilot ratings, pilot commentary, and some objective performance measures. Criteria for damping and sensitivity are reexamined when combined with the additional factors of cross coupling due to pitch and roll rates, pitch coupling with collective pitch, and longitudinal static stability. Ratings obtained with and without motion are compared. Acceptable flying qualities were obtained within each rotor type by suitable adjustment of the hub parameters, however, pure teetering rotors were found to lack control power for the tasks. A limit for the coupling parameter L sub q/L sub p of 0.35 is suggested

    Precambrian isotopic sources of the Anti-Atlas, Morocco

    Get PDF
    The isotopic data stored in detrital and magmatic zircons are crucial for assessing magma sources, terrane correlation, paleogeography and plate reconstructions. In many cases the comparison of the zircon age and isotope signature of a terrane of unknown provenance with the signature of possible sources, generally old cratonic areas, can resolve questions of origin and paleoposition. Obviously, a precise knowledge of the zircon characteristics of these old areas is essential for reliable comparisons. One of the major sources of sediments of the peri-Gondwanan terranes and of the European Variscan Belt is the West African craton. The northern boundary of this craton is the Pan- African Anti-Atlas belt, which is therefore an ideal place to better constrain the zircon isotopic features of sediments sourced from it. With that aim, we obtained LA-ICM-MS U-Pb and Hf isotopic data of more than 600 zircons separated from six samples of siliciclastic sedimentary rocks from the main Neoproterozoic stratigraphic units of the Anti-Atlas belt, from the Sirwa and Zenaga inliers. The data suggest that the north part of the West African craton formed during three cycles of juvenile crust formation, with variable amount of reworking of older crust. The youngest group of zircons, with a main population clustering around 610 Ma, has a predominantly juvenile character and evidence of moderate mixing with Paleoproterozoic crust, suggesting that the igneous and metamorphic rocks in which the zircons originally crystallized were formed in an ensialic magmatic arc environment. A group of zircons with ages in the range 1.79–2.3 Ga corresponds to the major crust forming event in the West African craton: the Eburnian- Birimian orogeny. The isotopic data indicate that the provenance area should represent a crustal domain that separated from a mantle reservoir at ∌2050–2300 Ma, and further evolved with a time-integrated 176Lu/177Hf of ∌0.013, characteristic of continental crust. The evolution of the Eburnian orogeny is apparently dominated by new crust formation in a magmatic arc environment. The Lower Paleoproterozoic and Neoarchean evolution (2.3–2.75 Ga) involves a group of detrital zircon ages that has not been identified up to now in the igneous or metamorphic rocks of the north West African craton basement. Their Hf isotopic signature points to reworking of juvenile crust mixed with moderate amounts of Archean crust. The significance of these ages is uncertain: they could represent a tectonothermal event not discovered yet in the Reguibat Shield or the zircons can be far-travelled from an unknown source.Peer Reviewe

    Results of NASA/FAA ground and flight simulation experiments concerning helicopter IFR airworthiness criteria

    Get PDF
    A sequence of ground and flight simulation experiments was conducted to investigate helicopter instrument-flight-rules airworthiness criteria. The first six of these experiments and major results are summarized. Five of the experiments were conducted on large-amplitude motion base simulators. The NASA-Army V/STOLAND UH-1H variable-stability helicopter was used in the flight experiment. Artificial stability and control augmentation, longitudinal and lateral control, and in pitch and roll attitude augmentation were investigated

    Cut-free Calculi and Relational Semantics for Temporal STIT Logics

    Get PDF
    We present cut-free labelled sequent calculi for a central formalism in logics of agency: STIT logics with temporal operators. These include sequent systems for Ldm , Tstit and Xstit. All calculi presented possess essential structural properties such as contraction- and cut-admissibility. The labelled calculi G3Ldm and G3Tstit are shown sound and complete relative to irreflexive temporal frames. Additionally, we extend current results by showing that also Xstit can be characterized through relational frames, omitting the use of BT+AC frames

    Formation of Kinneyia via shear-induced instabilities in microbial mats

    Get PDF
    Kinneyia are a class of microbially mediated sedimentary fossils. Characterized by clearly defined ripple structures, Kinneyia are generally found in areas that were formally littoral habitats and covered by microbial mats. To date, there has been no conclusive explanation of the processes involved in the formation of these fossils. Microbial mats behave like viscoelastic fluids. We propose that the key mechanism involved in the formation of Kinneyia is a Kelvin–Helmholtz-type instability induced in a viscoelastic film under flowing water. A ripple corrugation is spontaneously induced in the film and grows in amplitude over time. Theoretical predictions show that the ripple instability has a wavelength proportional to the thickness of the film. Experiments carried out using viscoelastic films confirm this prediction. The ripple pattern that forms has a wavelength roughly three times the thickness of the film. This behaviour is independent of the viscosity of the film and the flow conditions. Laboratory-analogue Kinneyia were formed via the sedimentation of glass beads, which preferentially deposit in the troughs of the ripples. Well-ordered patterns form, with both honeycomb-like and parallel ridges being observed, depending on the flow speed. These patterns correspond well with those found in Kinneyia, with similar morphologies, wavelengths and amplitudes being observed

    Implementing spatially explicit wind-driven seed and pollen dispersal in the individual-based larch simulation model: LAVESI-WIND 1.0

    Get PDF
    It is of major interest to estimate the feedback of arctic ecosystems to the global warming we expect in upcoming decades. The speed of this response is driven by the potential of species to migrate, tracking their climate optimum. For this, sessile plants have to produce and disperse seeds to newly available habitats, and pollination of ovules is needed for the seeds to be viable. These two processes are also the vectors that pass genetic information through a population. A restricted exchange among subpopulations might lead to a maladapted population due to diversity losses. Hence, a realistic implementation of these dispersal processes into a simulation model would allow an assessment of the importance of diversity for the migration of plant species in various environments worldwide. To date, dynamic global vegetation models have been optimized for a global application and overestimate the migration of biome shifts in currently warming temperatures. We hypothesize that this is caused by neglecting important fine-scale processes, which are necessary to estimate realistic vegetation trajectories. Recently, we built and parameterized a simulation model LAVESI for larches that dominate the latitudinal treelines in the northernmost areas of Siberia. In this study, we updated the vegetation model by including seed and pollen dispersal driven by wind speed and direction. The seed dispersal is modelled as a ballistic flight, and for the pollination of ovules of seeds produced, we implemented a wind-determined and distance-dependent probability distribution function using a von Mises distribution to select the pollen donor. A local sensitivity analysis of both processes supported the robustness of the model's results to the parameterization, although it highlighted the importance of recruitment and seed dispersal traits for migration rates. This individual-based and spatially explicit implementation of both dispersal processes makes it easily feasible to inherit plant traits and genetic information to assess the impact of migration processes on the genetics. Finally, we suggest how the final model can be applied to substantially help in unveiling the important drivers of migration dynamics and, with this, guide the improvement of recent global vegetation models.</p
    • 

    corecore