618 research outputs found

    Metabolic enzymes from psychrophilic bacteria: Challenge of adaptation to low temperatures in ornithine carbamoyltransferase from Moritella abyssi

    Full text link
    The enzyme ornithine carbamoyltransferase (OTCase) of Motitella abyssi (OTCase(Mab)), a new, strictly psychrophilic and piezophilic bacterial species, was purified. OTCase(Mab) displays maximal activity at rather low temperatures (23 to 25degreesC) compared to other cold-active enzymes and is much less thermoresistant than its homologues from Escherichia coli or thermophilic procaryotes. In vitro the enzyme is in equilibrium between a trimeric state and a dodecameric, more stable state. The melting point and denaturation enthalpy changes for the two forms are considerably lower than the corresponding values for the dodecameric Pyrococcus furiosus OTCase and for a thermolabile trimeric mutant thereof. OTCase(Mab) displays higher K-m values for ornithine and carbamoyl phosphate than mesophilic and thermophilic OTCases and is only weakly inhibited by the bisubstrate analogue delta-N-phosphonoacetyl-L-ornithine (PALO). OTCase(Mab) differs from other, nonpsychrophilic OTCases by substitutions in the most conserved motifs, which probably contribute to the comparatively high K-m values and the lower sensitivity to PALO. The K. for ornithine, however, is substantially lower at low temperatures. A survey of the catalytic efficiencies (k(cat)/K-m) of OTCases adapted to different temperatures showed that OTCase(Mab) activity remains suboptimal at low temperature despite the 4.5-fold decrease in the K-m value for ornithine observed when the temperature is brought from 20 to 5degreesC. OTCase(Mab) adaptation to cold indicates a trade-off between affinity and catalytic velocity, suggesting that optimization of key metabolic enzymes at low temperatures may be constrained by natural limits

    Mechanical behavior of Ti-5553 alloy. Modeling of representative cells.

    Get PDF

    Revisiting differences between atopic and non-atopic asthmatics: When age is shaping airway inflammatory profile

    Full text link
    BACKGROUND: Atopic asthma is one of the most common asthma phenotypes and is generally opposed to the non-atopic counterpart. There have been very few large-scale studies comparing atopic and non-atopic asthmatics in terms of systemic and airway inflammation across the age spectrum. METHODS: Here, we have undertaken a retrospective study investigating 1626 patients (924 atopic and 702 non-atopic asthmatics) recruited from our university asthma clinic who underwent extensive clinical investigations including induced sputum. Atopy was defined by any positive specific IgE to common aeroallergens (>0,35 kU/L). We performed direct comparisons between the groups and sought to appreciate the influence of age on the airway and systemic inflammatory components. The study was approved by the ethics committee of the University Hospital of Liege (Ref. 2016/276). Informed consents were obtained from healthy subjects. RESULTS: Atopic asthmatics were younger (P < .001), had a higher male/female ratio (P < .001), an earlier disease onset (P < .001) and a greater proportion of treated rhinitis (P < .001) while non-atopic asthmatics had greater smoke exposure (P < .001), lower FEV(1)/FVC ratio (P = .01) and diffusing capacity (P < .001). There was no difference between the 2 groups regarding FEV(1) (% predicted), asthma control, asthma quality of life and exacerbations in the previous 12 months. Regarding inflammation, atopic patients had higher FeNO levels (median = 28 ppb, P < .001), were more eosinophilic both in blood (median = 2.8%, P < .001) and in sputum (median = 2.2%, P < .001) while non-atopic patients displayed greater blood (median = 57%, P = .01) and sputum (median = 58.8%, P = .01) neutrophilic inflammation. However, stratifying patients by age showed that non-atopic asthmatics above 50 years old became equally eosinophilic in the sputum (P = .07), but not in the blood, as compared to atopic patients. Likewise, FeNO rose in non-atopic patients after 50 years old but remained, however, lower than in atopic patients. CONCLUSIONS: We conclude that, while sharing many features, atopic group still differentiates from non-atopic asthmatics by demographics, functional and inflammatory profiles. When atopic asthmatics showed a constant eosinophilic pattern across the age spectrum, non-atopic asthmatics were found to be neutrophilic before the age of 50 but eosinophilic above 50 years old

    Serine Hydroxymethyltransferase from the Cold Adapted Microorganism Psychromonas ingrahamii: A Low Temperature Active Enzyme with Broad Substrate Specificity

    Get PDF
    Serine hydroxymethyltransferase from the psychrophilic microorganism Psychromonas ingrahamii was expressed in Escherichia coli and purified as a His-tag fusion protein. The enzyme was characterized with respect to its spectroscopic, catalytic, and thermodynamic properties. The properties of the psychrophilic enzyme have been contrasted with the characteristics of the homologous counterpart from E. coli, which has been structurally and functionally characterized in depth and with which it shares 75% sequence identity. Spectroscopic measures confirmed that the psychrophilic enzyme displays structural properties almost identical to those of the mesophilic counterpart. At variance, the P. ingrahamii enzyme showed decreased thermostability and high specific activity at low temperature, both of which are typical features of cold adapted enzymes. Furthermore, it was a more efficient biocatalyst compared to E. coli serine hydroxymethyltransferase (SHMT) particularly for side reactions. Many β-hydroxy-α-amino acids are SHMT substrates and represent important compounds in the synthesis of pharmaceuticals, agrochemicals and food additives. Thanks to these attractive properties, this enzyme could have a significant potential for biotechnological applications

    MutT from the fish pathogen Aliivibrio salmonicida is a cold active nucleotide pool sanitization enzyme with an unexpected high thermostability

    Get PDF
    AbstractUpon infection by pathogenic bacteria, production of reactive oxygen species (ROS) is part of the host organism’s first line of defence. ROS damage a number of macromolecules, and in order to withstand such a harsh environment, the bacteria need to have well-functioning ROS scavenging and repair systems. Herein, MutT is an important nucleotide-pool sanitization enzyme, which degrades 8-oxo-dGTP and thus prevents it from being incorporated into DNA. In this context, we have performed a comparative biochemical and structural analysis of MutT from the fish pathogen Aliivibrio salmonicida (AsMutT) and the human pathogen Vibrio cholerae (VcMutT), in order to analyse their function as nucleotide sanitization enzymes and also determine possible cold-adapted properties of AsMutT. The biochemical characterisation revealed that both enzymes possess activity towards the 8-oxo-dGTP substrate, and that AsMutT has a higher catalytic efficiency than VcMutT at all temperatures studied. Calculations based on the biochemical data also revealed a lower activation energy (Ea) for AsMutT compared to VcMutT, and differential scanning calorimetry experiments showed that AsMutT displayed an unexpected higher melting temperature (Tm) value than VcMutT. A comparative analysis of the crystal structure of VcMutT, determined to 2.42Å resolution, and homology models of AsMutT indicate that three unique Gly residues in loops of VcMutT, and additional long range ion-pairs in AsMutT could explain the difference in temperature stability of the two enzymes. We conclude that AsMutT is a stable, cold-active enzyme with high catalytic efficiency and reduced Ea, compared to the mesophilic VcMutT
    • …
    corecore