5 research outputs found

    An Update on Cardioprotection A Review of the Latest Adjunctive Therapies to Limit Myocardial Infarction Size in Clinical Trials

    Get PDF
    Acute myocardial infarction (AMI) with subsequent left ventricular dysfunction and heart failure continues to be a major cause of morbidity and mortality in the Western world. Rapid advances in the treatment of AMI, mainly through timely reperfusion, have substantially improved outcomes in patients presenting with acute coronary syndrome and particularly ST-segment elevation myocardial infarction. A vast amount of research, both translational and clinical, has been published on various pharmacological and interventional techniques to prevent myocardial cell death during the time of ischemia and subsequent reperfusion. Several methods of cardioprotection have shown the ability to limit myocardial infarction size in clinical trials. Examples of interventional techniques that have proven beneficial are ischemic post-conditioning and remote ischemic per-conditioning, both of which can reduce infarction size. Lowering core body temperature with cold saline infusion and cooling catheters have also been shown to be effective in certain circumstances. The most promising pharmaceutical cardioprotective agents at this time appear to be adenosine, atrial natriuretic peptide, and cyclosporine, with other potentially effective medications in the pipeline. Additional pre-clinical and clinical research is needed to further investigate newer cardioprotective strategies to continue the current trend of improving outcomes following AMI

    Injectable Graphene Oxide/Hydrogel-Based Angiogenic Gene Delivery System for Vasculogenesis and Cardiac Repair

    Get PDF
    The objective of this study was to develop an injectable and biocompatible hydrogel which can efficiently deliver a nanocomplex of graphene oxide (GO) and vascular endothelial growth factor-165 (VEGF) pro-angiogenic gene for myocardial therapy. For the study, an efficient nonviral gene delivery system using polyethylenimine (PEI) functionalized GO nanosheets (fGO) complexed with DNAVEGF was formulated and incorporated in the low-modulus methacrylated gelatin (GelMA) hydrogel to promote controlled and localized gene therapy. It was hypothesized that the fGOVEGF/GelMA nanocomposite hydrogels can efficiently transfect myocardial tissues and induce favorable therapeutic effects without invoking cytotoxic effects. To evaluate this hypothesis, a rat model with acute myocardial infarction was used, and the therapeutic hydrogels were injected intramyocardially in the peri-infarct regions. The secreted VEGF from in vitro transfected cardiomyocytes demonstrated profound mitotic activities on endothelial cells. A significant increase in myocardial capillary density at the injected peri-infarct region and reduction in scar area were noted in the infarcted hearts with fGOVEGF/GelMA treatment compared to infarcted hearts treated with untreated sham, GelMA and DNAVEGF/GelMA groups. Furthermore, the fGOVEGF/GelMA group showed significantly higher (p < 0.05, n = 7) cardiac performance in echocardiography compared to other groups, 14 days postinjection. In addition, no significant differences were noticed between GO/GelMA and non-GO groups in the serum cytokine levels and quantitative PCR based inflammatory microRNA (miRNA) marker expressions at the injected sites. Collectively, the current findings suggest the feasibility of a combined hydrogel-based gene therapy system for ischemic heart diseases using nonviral hybrid complex of fGO and DNA
    corecore