9,379 research outputs found

    Transverse laser cooling of a thermal atomic beam of dysprosium

    Full text link
    A thermal atomic beam of dysprosium (Dy) atoms is cooled using the 4f106s2(J=8)4f106s6p(J=9)4f^{10}6s^2 (J=8) \to 4f^{10}6s6p (J=9) transition at 421 nm. The cooling is done via a standing light wave orthogonal to the atomic beam. Efficient transverse cooling to the Doppler limit is demonstrated for all observable isotopes of dysprosium. Branching ratios to metastable states are demonstrated to be <5×104<5\times10^{-4}. A scheme for enhancement of the nonzero-nuclear-spin-isotope cooling, as well as a method for direct identification of possible trap states, is proposed.Comment: 5 pages, 4 figures v2: 7 pages, 7 figure

    Progressive Star Bursts and High Velocities in the Infrared Luminous, Colliding Galaxy Arp 118

    Get PDF
    In this paper we demonstrate for the first time the connection between the spatial and temporal progression of star formation and the changing locations of the very dense regions in the gas of a massive disk galaxy (NGC 1144) in the aftermath of its collision with a massive elliptical (NGC 1143). These two galaxies form the combined object Arp 118, a collisional ring galaxy system. The results of 3D, time-dependent, numerical simulations of the behavior of the gas, stars, and dark matter of a disk galaxy and the stars and dark matter in an elliptical during a collision are compared with multiwavelength observations of Arp 118. The collision that took place approximately 22 Myr ago generated a strong, non-linear density wave in the stars and gas in the disk of NGC 1144, causing the gas to became clumped on a large scale. This wave produced a series of superstarclusters along arcs and rings that emanate from the central point of impact in the disk. The locations of these star forming regions match those of the regions of increased gas density predicted the time sequence of models. The models also predict the large velocity gradients observed across the disk of NGC 1144. These are due to the rapid radial outflow of gas coupled to large azimuthal velocities in the expanding ring, caused by the impact of the massive intruder.Comment: 12 pages in document, and 8 figures (figures are separate from the document's file); Submitted to Astrophysical Journal Letter

    Low temperature relation for the trace of the energy-momentum tensor in QCD with light quarks

    Get PDF
    It is shown that the temperature derivatives of the anomalous and normal (quark massive term) contributions to the trace of the energy-momentum tensor in QCD are equal to each other in the low temperature region. The physical consequences of this relation are discussed.Comment: RevTeX, 4 pages, no figure

    Low temperature relations in QCD

    Full text link
    In this talk I discuss the low temperature relations for the trace of the energy-momentum tensor in QCD with two and three quarks. It is shown that the temperature derivatives of the anomalous and normal (quark massive term) contributions to the trace of the energy-momentum tensor in QCD are equal to each other in the low temperature region. Leading corrections connected with ππ\pi\pi-interactions and thermal excitations of KK and η\eta mesons are calculated.Comment: 10 pages, LaTeX2e. Talk given at 12th International Seminar on High-Energy Physics (QUARKS 2002), Novgorod, Russia, 1-7 Jun 200

    Polarization-correlated photon pairs from a single ion

    Full text link
    In the fluorescence light of a single atom, the probability for emission of a photon with certain polarization depends on the polarization of the photon emitted immediately before it. Here correlations of such kind are investigated with a single trapped calcium ion by means of second order correlation functions. A theoretical model is developed and fitted to the experimental data, which show 91% probability for the emission of polarization-correlated photon pairs within 24 ns.Comment: 8 pages, 9 figure

    Chandra Observations of the Interacting NGC 4410 Galaxy Group

    Full text link
    We present high resolution X-ray imaging data from the ACIS-S instrument on the Chandra telescope of the nearby interacting galaxy group NGC 4410. Four galaxies in the inner portion of this group are clearly detected by Chandra, including the peculiar low luminosity radio galaxy NGC 4410A. In addition to a nuclear point source, NGC 4410A contains diffuse X-ray emission, including an X-ray ridge extending out to about 12" (6 kpc) to the northwest of the nucleus. This ridge is coincident with an arc of optical emission-line gas, which has previously been shown to have optical line ratios consistent with shock ionization. This structure may be due to an expanding superbubble of hot gas caused by supernovae and stellar winds or by the active nucleus. The Chandra observations also show four or five possible compact ultra-luminous X-ray (ULX) sources (L(x) >= 10^39 erg/s) associated with NGC 4410A. At least one of these candidate ULXs appears to have a radio counterpart, suggesting that it may be due to an X-ray binary with a stellar-mass black hole, rather than an intermediate mass black hole. In addition, a faint diffuse intragroup X-ray component has been detected between the galaxies (L(x) ~ 10^41 erg/s). This supports the hypothesis that the NGC 4410 group is in the process of evolving via mergers from a spiral-dominated group (which typically have no X-ray-emitting intragroup gas) to an elliptical-dominated group (which often have a substantial intragroup medium).Comment: 27 pages, 14 figures; Accepted by Astronomical Journal; color images at http://www.etsu.edu/physics/bsmith/research/n4410.htm

    Spiral surface growth without desorption

    Full text link
    Spiral surface growth is well understood in the limit where the step motion is controlled by the local supersaturation of adatoms near the spiral ridge. In epitaxial thin-film growth, however, spirals can form in a step-flow regime where desorption of adatoms is negligible and the ridge dynamics is governed by the non-local diffusion field of adatoms on the whole surface. We investigate this limit numerically using a phase-field formulation of the Burton-Cabrera-Frank model, as well as analytically. Quantitative predictions, which differ strikingly from those of the local limit, are made for the selected step spacing as a function of the deposition flux, as well as for the dependence of the relaxation time to steady-state growth on the screw dislocation density.Comment: 9 pages, 3 figures, RevTe

    Characterization of an outbreak of equine coronavirus infection in adult horses in Switzerland.

    Get PDF
    INTRODUCTION Outbreaks of equine coronavirus (ECoV) infections have been described in different parts of the world including Europe. The aim of this report was to describe clinical signs, diagnostic work-up and outcome of the first documented outbreak of ECoV in Switzerland in order to raise the awareness for the disease and its various clinical presentations. The outbreak occurred on a farm with 26 horses. Of these, seven horses developed clinical disease ranging from mild signs such as fever and anorexia to severe signs of acute colitis. One horse died due to severe endotoxemia and circulatory shock secondary to severe acute necrotizing enteritis and colitis. Out of the 26 horses, five horses tested positive for ECoV, including two ponies without any clinical signs of infection. The low number of positive cases should nevertheless be interpreted with caution as testing was only performed on one occasion, over a month after the onset of clinical signs in the first suspected case. This report highlights the importance of diagnostic testing and early implementation of biosecurity measures on a farm with an ECoV outbreak. It should furthermore raise the awareness for unspecific and mild clinical signs such as fever and anorexia in affected animals that are potentially able to spread the disease

    Anatomical study of serotonergic innervation and 5-HT1A receptor in the human spinal cord

    Get PDF
    Serotonergic innervation of the spinal cord in mammals has multiple roles in the control of motor, sensory and visceral functions. In rats, functional consequences of spinal cord injury at thoracic level can be improved by a substitutive transplantation of serotonin (5-HT) neurons or regeneration under the trophic influence of grafted stem cells. Translation to either pharmacological and/or cellular therapies in humans requires the mapping of the spinal cord 5-HT innervation and its receptors to determine their involvement in specific functions. Here, we have performed a preliminary mapping of serotonergic processes and serotonin-lA (5-HT1A) receptors in thoracic and lumbar segments of the human spinal cord. As in rodents and non-human primates, 5-HT profiles in human spinal cord are present in the ventral horn, surrounding motoneurons, and also contact their presumptive dendrites at lumbar level. 5-HT1A receptors are present in the same area, but are more densely expressed at lumbar level. 5-HT profiles are also present in the intermediolateral region, where 5-HT1A receptors are absent. Finally, we observed numerous serotonergic profiles in the superficial part (equivalent of Rexed lamina II) of the dorsal horn, which also displayed high levels of 5-HT1A receptors. These findings pave the way for local specific therapies involving cellular and/or pharmacological tools targeting the serotonergic system
    corecore