20 research outputs found

    γδ T cells affect IL-4 production and B-cell tolerance

    Get PDF
    γδ T cells can influence specific antibody responses. Here, we report that mice deficient in individual γδ T-cell subsets have altered levels of serum antibodies, including all major subclasses, sometimes regardless of the presence of αβ T cells. One strain with a partial γδ deficiency that increases IgE antibodies also displayed increases in IL-4–producing T cells (both residual γδ T cells and αβ T cells) and in systemic IL-4 levels. Its B cells expressed IL-4–regulated inhibitory receptors (CD5, CD22, and CD32) at diminished levels, whereas IL-4–inducible IL-4 receptor α and MHCII were increased. They also showed signs of activation and spontaneously formed germinal centers. These mice displayed IgE-dependent features found in hyper-IgE syndrome and developed antichromatin, antinuclear, and anticytoplasmic autoantibodies. In contrast, mice deficient in all γδ T cells had nearly unchanged Ig levels and did not develop autoantibodies. Removing IL-4 abrogated the increases in IgE, antichromatin antibodies, and autoantibodies in the partially γδ-deficient mice. Our data suggest that γδ T cells, controlled by their own cross-talk, affect IL-4 production, B-cell activation, and B-cell tolerance

    Airborne ultra-wideband radar sounding over the shear margins and along flow lines at the onset region of the Northeast Greenland Ice Stream

    Get PDF
    We present a high-resolution airborne radar data set (EGRIP-NOR-2018) for the onset region of the Northeast Greenland Ice Stream (NEGIS). The radar data were acquired in May 2018 with the Alfred Wegener Institute\u27s multichannel ultra-wideband (UWB) radar mounted on the Polar 6 aircraft. Radar profiles cover an area of ∼24 000 km2 and extend over the well-defined shear margins of the NEGIS. The survey area is centered at the location of the drill site of the East Greenland Ice-Core Project (EastGRIP), and several radar lines intersect at this location. The survey layout was designed to (i) map the stratigraphic signature of the shear margins with radar profiles aligned perpendicular to ice flow, (ii) trace the radar stratigraphy along several flow lines, and (iii) provide spatial coverage of ice thickness and basal properties. While we are able to resolve radar reflections in the deep stratigraphy, we cannot fully resolve the steeply inclined reflections at the tightly folded shear margins in the lower part of the ice column. The NEGIS is causing the most significant discrepancies between numerically modeled and observed ice surface velocities. Given the high likelihood of future climate and ocean warming, this extensive data set of new high-resolution radar data in combination with the EastGRIP ice core will be a key contribution to understand the past and future dynamics of the NEGIS. The EGRIP-NOR-2018 radar data products can be obtained from the PANGAEA data publisher (https://doi.pangaea.de/10.1594/PANGAEA.928569; Franke et al., 2021a)

    Foundations of Translational Ecology

    Get PDF
    Ecologists who specialize in translational ecology (TE) seek to link ecological knowledge to decision making by integrating ecological science with the full complement of social dimensions that underlie today\u27s complex environmental issues. TE is motivated by a search for outcomes that directly serve the needs of natural resource managers and decision makers. This objective distinguishes it from both basic and applied ecological research and, as a practice, it deliberately extends research beyond theory or opportunistic applications. TE is uniquely positioned to address complex issues through interdisciplinary team approaches and integrated scientist–practitioner partnerships. The creativity and context-specific knowledge of resource managers, practitioners, and decision makers inform and enrich the scientific process and help shape use-driven, actionable science. Moreover, addressing research questions that arise from on-the-ground management issues – as opposed to the top-down or expert-oriented perspectives of traditional science – can foster the high levels of trust and commitment that are critical for long-term, sustained engagement between partners

    On the limitations of using polarimetric radar sounding to infer the crystal orientation fabric of ice masses

    No full text
    We introduce a transfer matrix model for radio-wave propagation through layered anisotropic ice that permits an arbitrary dielectric permittivity tensor in each layer. The model is used to investigate how crystal orientation fabrics without a vertical principal direction affect polarimetric radar returns over glaciers and ice sheets. By expanding the c-axis orientation distribution in terms of a spherical harmonic series, we find that radar returns from synthetic fabric profiles are relatively insensitive to the harmonic mode responsible for a nonvertical principal direction; however, only for normally incident waves. Consequently, the strength of this mode might be relatively difficult to infer in glaciers and ice sheets, which in turn has implications for the ability to determine the full second-order structure tensor, needed to infer the local flow regime, flow history, or to represent the directional viscosity structure of glacier ice for ice-flow modeling

    γδ T Cells Shape Preimmune Peripheral B Cell Populations

    No full text
    We previously reported that selective ablation of certain γδ T cell subsets, rather than removal of all γδ T cells, strongly affects serum Ab levels in nonimmunized mice. This type of manipulation also changed T cells, including residual γδ T cells, revealing some interdependence of γδ T cell populations. For example, in mice lacking Vγ4(+) and Vγ6(+) γδ T cells (B6.TCR-Vγ4(-/-)/6(-/-)), we observed expanded Vγ1(+) cells, which changed in composition and activation and produced more IL-4 upon stimulation in vitro, increased IL-4 production by αβ T cells as well as spontaneous germinal center formation in the spleen, and elevated serum Ig and autoantibodies. We therefore examined B cell populations in this and other γδ-deficient mouse strains. Whereas immature bone marrow B cells remained largely unchanged, peripheral B cells underwent several changes. Specifically, transitional and mature B cells in the spleen of B6.TCR-Vγ4(-/-)/6(-/-) mice and other peripheral B cell populations were diminished, most of all splenic marginal zone (MZ) B cells. However, relative frequencies and absolute numbers of Ab-producing cells, as well as serum levels of Abs, IL-4, and BAFF, were increased. Cell transfers confirmed that these changes are directly dependent on the altered γδ T cells in this strain and on their enhanced potential of producing IL-4. Further evidence suggests the possibility of direct interactions between γδ T cells and B cells in the splenic MZ. Taken together, these data demonstrate the capability of γδ T cells of modulating size and productivity of preimmune peripheral B cell populations

    Crystal orientation fabric anisotropy causes directional hardening of the Northeast Greenland Ice Stream

    Get PDF
    This research was undertaken, in part, thanks to funding from the Canada Excellence Research Chairs Programme and has been financially supported by the Villum Investigator Project IceFlow (Grant No. 16572 to D.D.-J.). Radar development was further supported by funding from the University of Alabama. EGRIP is directed and organised by the Centre for Ice and Climate at the Niels Bohr Institute, University of Copenhagen. S.F. received funding from the German Academic Exchange Service (DAAD): Forschungsstipendien für promovierte Nachwuchswissenschaftlerinnen und -wissenschaftler. M.R.E. was supported by a DFG Emmy Noether grant (grant no. DR 822/3-1).The dynamic mass loss of ice sheets constitutes one of the biggest uncertainties in projections of ice-sheet evolution. One central, understudied aspect of ice flow is how the bulk orientation of the crystal orientation fabric translates to the mechanical anisotropy of ice. Here we show the spatial distribution of the depth-averaged horizontal anisotropy and corresponding directional flow-enhancement factors covering a large area of the Northeast Greenland Ice Stream onset. Our results are based on airborne and ground-based radar surveys, ice-core observations, and numerical ice-flow modelling. They show a strong spatial variability of the horizontal anisotropy and a rapid crystal reorganisation on the order of hundreds of years coinciding with the ice-stream geometry. Compared to isotropic ice, parts of the ice stream are found to be more than one order of magnitude harder for along-flow extension/compression while the shear margins are potentially softened by a factor of two for horizontal-shear deformation.Publisher PDFPeer reviewe

    Crystal orientation fabric anisotropy causes directional hardening of the Northeast Greenland Ice Stream

    No full text
    The dynamic mass loss of ice sheets constitutes one of the biggest uncertainties in projections of ice-sheet evolution. One central, understudied aspect of ice flow is how the bulk orientation of the crystal orientation fabric translates to the mechanical anisotropy of ice. Here we show the spatial distribution of the depth-averaged horizontal anisotropy and corresponding directional flow-enhancement factors covering a large area of the Northeast Greenland Ice Stream onset. Our results are based on airborne and ground-based radar surveys, ice-core observations, and numerical ice-flow modelling. They show a strong spatial variability of the horizontal anisotropy and a rapid crystal reorganisation on the order of hundreds of years coinciding with the ice-stream geometry. Compared to isotropic ice, parts of the ice stream are found to be more than one order of magnitude harder for along-flow extension/compression while the shear margins are potentially softened by a factor of two for horizontal-shear deformation.</p
    corecore