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γδ T cells can influence specific antibody responses. Here, we
report that mice deficient in individual γδ T cell subsets have
altered levels of serum antibodies including all major subclasses,
sometimes regardless of the presence of αβ T cells. One strain with
a partial γδ deficiency that increases IgE antibodies also displayed
increases in IL-4-producing T cells (both residual γδ T cells and
αβ T cells), and in systemic IL-4 levels. Its B cells expressed IL-4-
regulated inhibitory receptors (CD5, CD22, CD32) at diminished
levels while IL-4 inducible IL-4Rα and MHCII were increased. They
also showed signs of activation and spontaneously formed germi-
nal centers. These mice displayed IgE-dependent features found in
hyper IgE syndrome, and developed anti-chromatin, anti-nuclear
and anti- cytoplasmic autoantibodies. In contrast, mice deficient in
all γδ T cells had nearly unchanged Ig levels, and did not develop
autoantibodies. Removing IL-4 abrogated the increases in IgE,
anti-chromatin antibodies and autoantibodies in the partially γδ-
deficient mice. Our data suggest that γδ T cells, controlled by their
own crosstalk, affect IL-4 production, B cell activation and B cell
tolerance.

gammadelta T cell | Interleukin-4 | Autoimmunity | Immunoglobulin
| Tolerance

Introduction

The role of γδ T cells within the vertebrate immune system
is not yet fully understood but it has become clear that they
exert a strong influence on the immune responses. These cells
represent a system of specialized subsets with different devel-
opmental kinetics, tissue distributions and functional roles (1).
Moreover, at least some of the subsets appear to balance each
other’s influence on the immune system (2). Like αβ T cells
and B cells, γδ T cells express antigen receptors encoded by
rearranging genes (3, 4), which enable adaptive responses to
antigenic challenge. Following such stimulation in the course of
diseases, γδ T cell populations can undergo large changes in size
and subset composition (5). The γδT cell populations also change
during ontogeny, and due to inter-individual genetic differences
(6, 7). Conceivably, such changes might alter γδ T cell balance
and with it γδ T cell influence on other immune cells.

In mice and humans, it was found that functional attributes
of γδ T cells segregate with expressed γδ T cell receptors (TCR)
(8, 9) although functional differentiation has also been observed
within or across TCR-defined subsets, and correlated with other
markers such as CD27 and CD8 (10, 11). The murine TCRγ locus
contains seven Vγ genes, six of which are functional and expressed
on the cell surface (3, 12). In the normal mouse spleen, the largest
γδ T cell population expresses Vγ1, followed by Vγ4pos cells and
smaller populations expressing Vγ2 and Vγ7 (13). Vγ5pos and
Vγ6pos cells are not present in substantial numbers. In earlier
studies relying on cell transfer and targeted inactivation with
antibodies, we and others found that splenic Vγ1pos and Vγ4pos

cells exert opposite influences on host responses to infection,
allergic sensitization and malignancy (8, 10, 14, 15). The data
suggested that these two γδ T cell subsets balance each other in
their influence on the immune responses (2).

In the current study, we further tested this idea by examining
antibody levels and B cells in non-immunized mice genetically
deficient either in individual γδ T cell subsets or in all γδ T
cells. The focus on antibodies derives from our earlier observation
that mutant mice selectively deficient in Vγ4 and Vγ6 (B6.TCR-
Vγ4-/-/6-/-) produce substantially more IgE antibody than wt con-
trols or mice deficient in all γδ T cells (B6.TCR-δ-/-) (10). Here,
we report that deficiency in individual γδ T cell subsets (16, 17)
can change antibody production and B cell activation in non-
immunized mice, to a degree that jeopardizes self-tolerance.
However, the effect cannot simply be ascribed to an altered γδ
T cell balance. Instead, it correlates with functional changes that
occur within the remaining γδ T cells themselves, when they are
no longer restrained by normal γδ cross talk. Our data show that
this cross talk controls the amount of IL-4 produced by a subset
of γδ T cells and other T cells, resulting in downstream effects on
antibodies, B cells and self-tolerance.

Results
Genetic γδ T cell-deficiencies change systemic antibody levels in
non-immunized mice

Having found that IgE antibody responses in OVA/alum-
immunized and non-immunized mice are sensitive to the func-
tional balance within the γδ T cell compartment (10), we won-
dered if this balance also affects other pre-immune antibod-
ies. We therefore examined a panel of background-matched
mouse strains with genetic deficiencies in TCR γ or δ genes for
systemic antibody levels (Fig. 1). The panel includes C57BL/6
mice (wt control), B6.TCR-δ-/- mice (lacking all γδ T cells) (18),
B6.TCR-Vγ1-/- mice (lacking Vγ1pos γδ T cells) (17) and B6.TCR-

Significance

This study changes our understanding of the relationship
between T cells and B cells. While it is known that T cells
provide help for specific B cell responses it is unclear if and to
what extent T cells also influence pre-immune B cell functions.
We show here that γδ T cells modulate systemic antibody
levels in non-immunized mice including all major subclasses,
and especially IgE antibodies. One mouse strain deficient in
certain γδ T cells developed various autoantibodies whereas
mice deficient in all γδ T cells had relatively normal antibodies.
Based on these and other findings we conclude that γδ T cells,
influenced by their own crosstalk, affect IL-4 production, B cell
activation and B cell tolerance.
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Fig. 1. Influence of γδ T cells on systemic anti-
body levels (A-H) Antibody ELISA in sera from 8-12
wks old female mice, including C57BL/6 (B6), B6.TCR-
δ-/- (δ-/-), B6.TCR-Vγ1-/- (Vγ1-/-), and B6.TCR-Vγ4-/-/Vγ6-/-

(Vγ4-/-/6-/-). (A) Total serum Ig, (B-H) ELISA of Ig sub-
classes as indicated, n = 10 - 23 mice per group,
*P<0.05, **P<0.01, ***P<0.001, NS not significant

Vγ4-/-/6-/- mice (lacking Vγ4pos and Vγ6pos γδ T cells) (16, 19). In
the absence of all γδ T cells, total absolute serum Ig levels were
somewhat decreased (∼ 2 fold relative to wt mice). However,
when only Vγ1pos cells were missing, total Ig levels were decreased
more drastically (∼ 6 fold). In marked contrast, the absence
of Vγ4pos plus Vγ6pos cells was associated with an increase in
total Ig levels (∼ 4 fold relative to wt mice) (Fig. 1A). Similar
patterns were seen within Ig subclasses although the extent of the
changes varied. Thus, IgM, IgG3, IgG2c and IgA levels were not
substantially affected by the absence of all γδ T cells (Fig. 1B, C,
F, H) although at least one of the partial γδ deficiencies changed
all of these antibodies. The largest serum antibody changes in the
partially γδT cell-deficient mice were seen with IgM, IgG1, IgG2b
and IgE (Fig. 1B, D, E, G) and the smallest with IgG3 and IgA
(Fig. 1C, H). Plotting frequencies of the Ig subclasses relative to
total Ig showed a dramatic increase of IgE antibodies in B6.TCR-
Vγ4-/-/6-/- mice whereas IgA antibodies were relatively decreased
(Fig. S1). In B6.TCR-Vγ1-/- mice, on the other hand, IgA was
relatively increased whereas IgE was changed little. Overall, the
partially γδ-deficient mice greatly differed from wt and totally γδ-
deficient mice in the composition of their serum Ig, and synopsis
of the data revealed that genetically induced changes in the mix
of γδ T cells affect levels and composition of antibodies present
in non-immunized mice.

Genetic γδ T cell-deficiency can affect antibodies indepen-
dently of αβ T cells

To address a potential requirement of αβ T cells, we re-
examined the effect of genetic γδ-deficiency in the context of a
αβ T cell-deficient background (Fig. 2). Similar changes in the

antibodies would indicate independence from αβ T cells, while
absent or different changes would indicate a requirement for
them. Deficiency in Vγ4pos and Vγ6pos cells on an αβ-deficient
background (B6.TCR-β-/-/Vγ4-/-/6-/- vs B6.TCR-β-/-) still much in-
creased total Ig, IgM, IgG3, IgG2b, IgG2c and, to a lesser degree,
IgA (Fig. 2A,B,C,E,F,H), as had been found in the comparison
of αβ T cell-sufficient mice (Fig. 1), suggesting that the γδ-effect
on these antibodies is largely αβ T-independent. However, it no
longer increased IgG1 and IgE (Fig. 2D,G), revealing that the γδ-
effects on these antibody subclasses are αβ T-dependent. Despite
much lower levels in the αβ T cell-deficient mice, anti-chromatin
antibodies were still significantly increased by this partial γδ-
deficiency (Fig. 2I, compare with Fig. 4C,D), indicating that the
regulatory effect of γδT cells on the generation of anti-chromatin
antibodies involves both αβ T cell-dependent and -independent
pathways. Additional evidence for a role of αβ T cells was seen
after treating B6.TCR-Vγ4-/-/6-/- mice with an antibody specific
for TCR-β, which transiently inactivates αβ T cells (20). This
treatment failed to decrease absolute levels of anti- chromatin
antibodies (although it decreased their frequency relative to total
Ig, which increased), but it clearly reduced IgG1 and IgE levels,
consistent with a role for αβ T cells (Fig. S2A). Taken together,
the data shown in Fig. 1, Fig. 2 and Figs. S1 and S2 revealed that
an unbalanced repertoire of γδ T cells affect antibody levels in
ways both independent of and dependent on αβ T cells.

As with αβ-sufficient mice, the complete absence of γδ T cells
in αβ-deficient mice (B6.TCR-β-/- vs B6.TCR-β-/-/δ-/-) imparted
smaller effects on antibody levels than did a partial γδ T cell
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Fig. 2. Influence ofγδ T cells on systemic anti-
body levels in the absence of αβ T cells or IL-4 (A-
I) Antibody ELISA in sera from 8-12 wks old fe-
male mice, including B6.TCR-Vγ4-/-/Vγ6-/- (Vγ4-/-/6-/-),
B6.TCR-Vγ4-/-/Vγ6-/-/IL-4-/- (Vγ4-/-/Vγ6-/-/IL-4-/-), B6.TCR-
Vγ4-/-/Vγ6-/-/TCR-β-/- (Vγ4-/-/Vγ6-/-/β-/-), B6.TCR-β-/- (β-/-)
and B6.TCR-β-/-/δ-/- mice (β-/-/δ-/-). (A) Total serum Ig,
(B-H) ELISA of Ig subclasses as indicated, (I) total anti
chromatin Ig. n = 9 - 21 mice per group, *P<0.05,
**P<0.01, ***P<0.001, NS not significant

deficiency, and such effects were further diminished due to the
overall lower antibody production in the αβ-deficient mice.

Mice deficient in Vγ4pos and Vγ6pos γδ T cells display spon-
taneous germinal center formation and increases in activated B
cells.

Because total Ig levels and most Ig subclasses were ele-
vated in non-immunized B6.TCR-Vγ4-/-/6-/- mice (except IgG3
and IgA), we examined B cells, the immediate precursors of
antibody secreting cells, in these mice. First, we compared wt and
B6.TCR-Vγ4-/-6-/- mice in terms of their splenic anatomy. Despite
their elevated antibodies, the γδ-deficient mice had smaller B
cell follicles (Fig. 3A), consistent with their reduced numbers of
mature splenic B cells (9.7+/-1.8 vs 36.3+/-6.7 mature B cells
x106/spleen). However, in marked contrast to the wt mice, they
developed germinal centers (GCs) as early as 4 wks of age, as
indicated by the PNApos cells surrounded by B220pos B cells,
and numbers of GCs further increased with age (8 or 16 wks),
whereas none were seen in the wt controls (Fig. 3A). In addition,
comparative flow cytometric analysis of splenic B cells showed a
larger relative frequency of germinal center B cells in B6.TCR-
Vγ4-/-6-/- mice (Fig. 3B).

Phenotypic comparison with wt B cells revealed that B cells
of B6.TCR-Vγ4-/-/6-/- mice expressed more CD69 (early activation
antigen), and CD80 and CD86 (inducible ligands for CD28),

both in terms of molecules/cell (MFI) and cellular frequencies
(%), whereas CD25 and CD62L were not substantially changed
(Fig. 3C). B6.TCR-Vγ4-/-/6-/- B cells also expressed more MHCII
molecules/cell (Figs. 3D, 7A), slightly more IL-4Rα and more
CD23 than the wt B cells (Fig. 7A), but less of the inhibitory
receptors CD5, CD22 and FcγRIIB (CD32) (Fig. 7B,C).

The same partial γδT cell deficiency also induces a hyper-IgE
phenotype and the development of autoantibodies

The activated B cells, increased absolute Ig levels, and altered
Ig class composition in B6.TCR-Vγ4-/-/6-/- mice suggested defi-
cient regulatory control, with a potential for secondary patholo-
gies and a break of tolerance. Serum IgE levels, already much
elevated in 8-12 wks old B6.TCR-Vγ4-/-/6-/- mice, were further
increased at 8 months of age (Fig. 4A). In these mice, cell-
bound IgE was readily detected on B cells (CD19pos, IgEhi; blood,
lymph nodes and spleen, and a small population in bone marrow)
and granulocytes (CD19neg, IgEhi; blood, bone marrow and a
smaller population in spleen) (Fig. 4B). Increases in basophilic,
neutrophilic and especially eosinophilic cells were also seen (Fig.
S3), a phenotype reminiscent of hyper IgE syndrome (21-23).

To assess auto-reactivity, we examined B6.TCR-
Vγ4-/-/6-/- mice and the other genetically matched mutant mouse
strains for serum levels of anti-chromatin Ig. By comparison
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Fig. 3. Spontaneous germinal center formation, B cell activation and increased levels of BAFF in partially γδ T cell-deficient mice(A)Spontaneous germinal
center formation and smaller B cell follicles in B6.TCR-Vγ4-/-/Vγ6-/- mice. Spleens of wt B6 and B6.TCR-Vγ4-/-/Vγ6-/- (Vγ4-/-/6-/-) mice were sectioned, fixed and
stained with antibodies specific for B220 (red) to detect B cells and with peanut agglutinin (PNA, green) to detect germinal centers, at the indicated ages. The
slides shown are representative for three experiments.(B) Increased relative frequency of germinal center B cells (compared to total B cells) in the spleen of
B6.TCR-Vγ4-/-/Vγ6-/- (Vγ4-/-/6-/-) mice. B cell populations in 8 wks old female C57BL/6 (wt) and B6.TCR-Vγ4-/-/Vγ6-/- (Vγ4-/-/6-/-) mice were compared. Germinal center
B cells (GCB) were identified using the indicated markers after first gating on lymphocytes and B220pos cells. The staining profiles shown are representative of 5
mice in each group.(C) Comparison of total B cells in the spleens of 8 wks old female C57BL/6 (wt) and B6.TCR-Vγ4-/-/Vγ6-/- (Vγ4-/-/6-/-) mice for expression of the
cell surface molecules CD69, CD25, CD80, CD86 and CD62L. Splenic B cells were identified based on their cell surface expression of B220 and CD19, and stained
in addition with antibodies specific for the listed cell surface molecules. Both mean fluorescence (MFI) and relative frequencies (%) are shown. Comparisons
that did not reveal significant differences are identified (NS). n = 4 mice per group.(D) Comparison of total B cells in the spleens of 8 wks old female C57BL/6
(wt) and B6.TCR-Vγ4-/-/Vγ6-/- (Vγ4-/-/6-/-) mice for cell surface-expressed MHCII molecules. Staining profiles shown are representative of 5 mice/group (see also
Fig. 7A).

with wt mice, B6.TCR-Vγ4-/-/6-/- mice had much increased
(10-15 fold), whereas B6.TCR-Vγ1-/- mice had decreased, anti-
chromatin antibodies (Fig. 4C). In the former, anti-chromatin
antibodies were increased also relative to total Ig in these
mice (Fig. 4D), suggesting impaired self-tolerance. Because
deficiency in all γδ T cells failed to change anti- chromatin
Ig levels, the increased levels seen in B6.TCR-Vγ4-/-/6-/- mice
likely reflect hyperactivity of the remaining γδ T cells, which are
mostly Vγ1pos. This interpretation is supported by the partially
activated phenotype of these cells (see Fig. 6). To directly assess
self-tolerance in B6.TCR-Vγ4-/-/6-/- mice, we tested for anti-
nuclear antibodies by immunofluorescence on fixed HEp-2 cells
(24), (Fig. 4E). In contrast to the wt mice, serum of individual
B6.TCR-Vγ4-/-6-/- mice indeed tested positive for anti-nuclear
antibodies (Fig. 4E, second to last row) as well as for a second
type of antibody staining undefined cytoplasmic antigens (Fig.
4E, last row). Such antibodies – albeit at varying titers - were
detectable in all mice tested (3 and 10 months of age). Comparing
wt and B6.TCR-Vγ4-/-/6-/- mice at 10 months of age, average
autoantibody levels detected by the HEp-2 assay (based on

mean fluorescence of stained cells) were > 15 fold higher in the
mutant mice (Fig. 4F and Fig. 2B). Finally, we examined these
mice for the presence of anti-dsDNA/histone and anti ssDNA
antibodies in serum. B6.TCR-Vγ4-/-/6-/- mice had substantially
increased anti-dsDNA/histone and slightly increased anti ssDNA
antibodies compared to wt mice (Fig. 4G, H). Together, these
data indicate a loss of self-tolerance in B6.TCR-Vγ4-/-/6-/- mice.

γδ T cells themselves control pre-immune antibody levels
We previously reported that adoptively transferred Vγ4pos

γδ T cells regulate specific IgE (10, 25). Because B6.TCR-
Vγ4-/-/6-/- mice display increased levels of pre-immune IgE, we
suspected that Vγ4pos γδ T cells also inhibit pre-immune IgE,
and that this inhibition is released in B6.TCR-Vγ4-/-/6-/- mice. We
therefore treated wt C57BL/6 mice with an antibody against anti
TCR-Vγ4, which specifically inactivates Vγ4pos γδ T cells (19),
and measured serum levels of IgE in treated mice and non-treated
controls (Fig. 5A). Serum IgE levels in the antibody-treated mice
increased substantially, confirming the inhibitory role of Vγ4pos

γδT cells. On the other hand, remaining γδT cells in the spleen of
B6.TCR-Vγ4-/-/6-/- mice were mostly Vγ1pos (see below) and some
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Fig. 4. IgE antibodies and autoantibodies in B6.TCR-Vγ4-/-/Vγ6-/- mice (A)Comparison of 2 and 8 months old female B6.TCR-Vγ4-/-/Vγ6-/- mice for IgE levels in
serum using antibody ELISA. N = 15 mice/group, **P<0.01. (B) IgE antibody-“decorated” cells in blood, bone marrow, lymph nodes and spleen of a representative
8 wks old female B6.TCR-Vγ4-/-/Vγ6-/- mouse. Cells were stained for IgE and CD19, and IgEpos CD19neg non-B cells were further tested for their expression of
FcεR1. The staining profile shown is representative for 5 similar experiments. (C,D) Anti chromatin Ig ELISA in sera of the same mice as in Fig.1, n = 7-23 mice
per group, **P<0.01, ***P<0.001, NS not significant. (E) Stains of fixed HEp-2 cells with DAPI alone for the detection of nuclei (negative control), DAPI plus
anti nuclear Ab J5.8 (24) (positive control), or sera of 8-12 wks old female mice including C57BL/6 (B6) and B6.TCR-Vγ4-/-/Vγ6-/- (Vγ4-/-/6-/-), at the indicated
dilutions. Whereas the wt mice tested negative for autoantibodies, all γδ-deficient mice examined contained autoantibodies, some with anti nuclear (second
to last row) and others with anti cytoplasmic (last row) specificity. (F) Quantitative comparison of mean fluorescence intensity (MFI) of HEp-2 cells stained with
positive control antibody, or sera from wt or B6.TCR-Vγ4-/-/Vγ6-/- mice, at a dilution of 1:50. n = 8, ***P<0.001.(G, H) Anti dsDNA/histone and ssDNA Ig ELISA,
respectively, in sera of 12 wks old wt and B6.TCR-Vγ4-/-/Vγ6-/- mice, n = 9 -10 mice per group, ***P<0.001.

of these cells are known to produce large quantities of IL-4 (26),
a cytokine that is critical in the generation and maintenance of
IgE antibodies (27). Furthermore, unrelated genetic mutations
causing a selective increase of Vγ1pos γδT cells were also found to
be associated with increased levels of IgE (28, 29). We therefore
targeted Vγ1pos cells in these mice with an antibody against TCR-
Vγ1 that specifically inactivates Vγ1pos γδ T cells (14). This
treatment significantly diminished serum IgE as well as anti-
chromatin Ig, and also serum titers of anti-nuclear autoantibodies
(Fig. 5B). In contrast, total Ig remained unchanged, and the IL-
4-independent IgG2c antibodies were increased.

In a complementary approach, we transferred the unbalanced
γδ T cells from the spleen of non-immunized B6.TCR-Vγ4-/-6-/-

mice, which are mainly Vγ1pos cells, to mice lacking all γδ T
cells (B6.TCR-δ-/-). As predicted, this significantly increased anti
chromatin antibodies in the cell transfer recipients, both in ab-
solute levels and relative to total Ig (Fig. 5C). In sum, these
experiments support the notion that individual γδ subsets, or
mixed but imbalanced γδ T cell populations, can alter antibody
levels including IgE, anti-chromatin Ig and other autoantibodies.

Partial γδ T cell-deficiency changes size, composition and
functional potential of the remaining γδ T cell population
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Fig. 5. Transient inactivation or adoptive transfer
of γδ T cells alter antibody levels and B cells in the
spleen (A) 8-12 wks old female C57BL/6 mice (B6)
were injected i.v. with antibodies specific for Vγ4,
and serum IgE levels examined by ELISA 10 days after
the antibody treatment. n = 7 mice per group. (B) 8-
12 wks old female B6.TCR-Vγ4-/-/Vγ6-/- (Vγ4-/-/6-/-) mice
were injected i.v. with antibodies specific for Vγ1, and
serum levels of total Ig, IgE, anti chromatin Ig and
IgG2c �ere�measured by ELISA 14 days after the
antibody treatment (n = 8 mice). In addition, autoanti-
bodies were measured using the Hep-2 staining assay
(MFI) as described in Fig. 4. n = 4 mice per group. (C) 4
wks old female B6.TCR-δ-/- mice were injected with pu-
rified γδ T cells from B6.TCR-Vγ4-/-/Vγ6-/- (Vγ4-/-/6-/-) or
B6.TCR-Vγ4-/-/Vγ6-/-/�L-4-/- (Vγ4-/-/6-/-/IL-4-/-), and anti
chromatin Ig levels in sera measured 10 days after the
cell transfer. n = 4 mice per group. *P<0.05, **P<0.01,
***P<0.001

Fig. 6. Changes in the residual γδ T cells of partially γδ
T cell-deficient mice(A) Cytofluorimetric comparison
of splenic γδ T cell populations in 10 wks old C57BL/6
(wt), B6.TCR-Vγ4-/-/Vγ6-/- (Vγ4-/-/6-/-) and B6.TCR-Vγ�-/-

(Vγ1-/-) mice, profiles shown are representative of at
least three independent experiments. (B) Absolute
numbers and frequency (relative to total T cells) of
splenic γδ T cells in the same mice as in (a). (C)
Expression levels (MFI) of CD25, CD40L, ICOS, CD69
and CD44 by splenic γδ T cells in wt and Vγ4-/-/6-/-

mice, at 10 wks of age. (D) Relative frequencies
of Vδ6pos γδ T cells within the splenic Vγ1pos sub-
set of C57BL/6 (wt), B6.TCR-Vγ4-/-/Vγ6-/- (Vγ4-/-/6-/-) or
B6.TCR-Vγ4-/-/Vγ6-/-/�L-4-/- (Vγ4-/-/6-/-/IL-4-/-) mice. (E)
In vitro induced secretion of IL-4 by splenic γδ and
αβ T cells in C57BL/6 (wt), B6.TCR-Vγ4-/-/6-/- (Vγ4-/-/6-/-)
and B6.TCR-Vγ1-/- (Vγ1-/-) mice. n = 4 mice per group,
*P<0.05, **P<0.01, ***P<0.001(F) In vivo production
of IL-4 in C57BL/6 (wt) and B6.TCR-Vγ4-/-/6-/- (Vγ4-/-/6-/-)
mice, measured by serum ELISA 8.5 hrs after i.v. injec-
tion of the capture antibody. n = 9 -11 mice/group,
***P<0.001
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Fig. 7. Requirement for IL-4 in the altered B
cell phenotype of B6.TCR-Vγ4-/-/6-/- mice(A) Cytoflu-
orimetric comparison of the expression levels (MFI)
of MHCII and CD23 in total splenic B cells of
C57BL/6 (wt), B6.TCR-Vγ4-/-/6-/- (Vγ4-/-/6-/-) and B6.TCR-
Vγ4-/-/Vγ6-/-/�L-4-/- (Vγ4-/-/6-/-/IL-4-/-) mice, and of IL-
4Ra in total splenic B cells and CD4pos T cells of the
same mouse panel. n = 4 mice per group, *P<0.05,
**P<0.01, ***P<0.001 (B) Cytofluorimetric compari-
son of the expression profiles (MFI) of CD5 in peri-
toneal cavity B cells, and of CD22 in B cells of the
inguinal lymph nodes, in the same panel of mouse
strains as in (A). Profiles are representative of 4 mice
in each group.

We examined the remaining γδ T cells in the spleen of par-
tially γδ T cell-deficient mice for possible changes compared to
γδT cells in wt mice. Surprisingly, residual γδT cells in the spleen
of B6.TCR-Vγ4-/-6-/- mice were increased in relative frequency
and absolute numbers, whereas γδ T cells in B6.TCR-Vγ1-/- mice
were decreased (Fig. 6A,B). Most splenic γδ T cells in B6.TCR-
Vγ4-/-6-/- mice were Vγ1pos (Fig. 6A). They had a mixed phenotype
suggesting altered composition and partial activation (increased
expression of CD25, CD40L and ICOS but not CD69 and CD44)
(Fig. 6C and Fig. S3G). Vγ1pos cells in B6.TCR-Vγ4-/-/6-/- mice
expressed Vδ6 at higher frequencies than did wt Vγ1pos cells
(Fig. 6D), a TCR-phenotype associated with a propensity for
IL-4 production (26). Indeed, splenic γδ T cells from B6.TCR-
Vγ4-/-6-/- mice produced far more IL-4 upon stimulation in vitro
than wt splenic γδ T cells or those from B6.TCR-Vγ1-/- mice (Fig.
6E). Thus, a partial γδ T cell deficiency altered the composition,
activation state and cytokine production of the residual γδT cells,
indicative of cross-regulation among γδ T cells. Of note, in vitro
stimulated splenic αβT cells from B6.TCR-Vγ4-/-6-/- and B6.TCR-
Vγ1-/- mice also produced more IL-4 than their wt counterparts

(Fig. 6E), albeit less on a per cell basis than the γδ T cells in
B6.TCR-Vγ4-/-6-/- mice.

Evidence that IL-4 mediates part of the dysregulated anti-
body phenotype of B6.TCR-Vγ4-/-/6-/- mice, as well as the under-
lying γδ T cell crosstalk

Because of the increase in IgE and IgG1 antibodies in
B6.TCR-Vγ4-/-/6-/- mice (Fig. 1), both of which are known to be
IL-4-dependent (30), as well as the heightened potential of their
T cells to produce IL-4 (Fig. 6), we speculated that locally or
systemically increased IL-4 might be largely responsible for the
phenotype of these mice. Compared to other cytokines, serum
levels of IL-4 are low, even in mice with increased IL-4 pro-
duction (31), but we were able to detect substantial increases in
the serum of B6.TCR-Vγ4-/-/6-/- mice (Fig. 6F). We also examined
known IL-4-sensitive molecules as surrogate indicators of IL-4
levels, including MHCII and CD23 on B cells, as well as IL-
4Rα (especially on T cells), all of which are positively regulated
by IL-4 (30, 32), and the B cell-inhibitory receptors CD5, CD22
and CD32, which are negatively regulated by IL-4 (33, 34). A
comparison of wt and B6.TCR-Vγ4-/-/6-/- mice (Figs. 3D and 7)
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showed changes in all of these indicators consistent with increased
IL-4 activity in B6.TCR-Vγ4-/-/6-/- mice. Secondly, we generated
B6.TCR-Vγ4-/-/6-/- /IL-4-/- double mutant mice in order to test if
this cytokine is a required mediator in the dysregulated antibody
phenotype of B6.TCR-Vγ4-/-/6-/- mice. Indeed, IgM, IgG1, IgE
and anti chromatin Ig were all much diminished in the double
mutants, IgG1 and IgE even below wt levels (compare Figs. 1
and 2), and anti-nuclear autoantibodies were no longer detectable
(Fig. S2B). Likewise, germinal center B cells were no longer
increased (Fig. 7D). In combination, these changes emphasize
the importance of IL-4 for the antibody phenotype of B6.TCR-
Vγ4-/-/6-/- mice.

Finally, γδ T cells in B6.TCR-Vγ4-/-/6-/- mice also were af-
fected by IL-4. The comparison with B6.TCR-Vγ4-/-/6-/- /IL-4-/-

mice (Fig. 6D) showed that IL-4 further shifts the altered com-
position of Vγ1pos cells in these mice towards the IL-4 producing
type (26).

Discussion

The study described here started with a previously noted connec-
tion between partial genetic deficiency in γδ T cells and changed
IgE levels (10). Experiments described within broaden this find-
ing to include all major Ig subclasses as well as antibodies with
specificity for auto-antigens, involving αβ T cell-dependent and
-independent pathways. Further experiments provide additional
evidence that γδ T cells per se, but not unrelated secondary
consequences of the gene KO mutations, mediate the change in
these antibodies.

A central finding of the current study is that partial genetic
deficiency in γδ T cells, i.e. the loss of individual TCR-defined
subsets, has a greater effect on antibody levels than total γδ T
cell deficiency. Because the Vγ1pos and Vγ4pos subsets investi-
gated here were previously associated with different and opposed
functional roles (8, 9, 14), this observation fits with the idea that
imbalanced γδ T cells rather than their complete absence, affect
antibody levels (2). However, because the remaining γδ T cells in
the partially γδ-deficient mice were changed in number, composi-
tion and inducible cytokine production, the data further indicate
that crosstalk among γδ T cells (15) regulates the functional
activity of individual subsets, and their potential influence on
antibody levels. These findings with γδ T cell-deficient mice have
implications for humans because humans vary greatly with regard
to γδ T cell numbers and composition, due to genetic differences,
during ontogeny, and as a consequence of diseases (5, 6). As with
mice, such variation might affect residual γδ T cell function in
humans, with consequences for antibody levels and other immune
responses, and perhaps even host-microbial homeostasis (35).

In one mouse line with a partial γδT cell deficiency (B6.TCR-
Vγ4-/-/6-/- mice), we found large increases of IgE and anti-
chromatin antibodies as well as autoantibodies with anti-nuclear
and anti-cytoplasmic specificities. This finding suggests that a
γδ T cell functional imbalance can precipitate a breakdown of
B cell tolerance. Consistently, B cells in these mice exhibited
signs of activation in the absence of immunization, along with
early age development of germinal centers in the spleen. This
activated phenotype is reminiscent of certain spontaneously au-
toimmune mouse strains such as NZB/NZW mice (36-39). We
have not yet determined if older B6.TCR-Vγ4-/-/6-/- mice develop
nephropathy and other autoantibody-related pathologies char-
acteristic of SLE-prone strains, but we already found features
typically associated with high levels of IgE antibodies such as
increased IgE receptor expression, eosinophilia and activated
mast cells. Hence, B6.TCR-Vγ4-/-/6-/- mice represent a model for
γδ-dependent antibody dysregulation leading to autoimmunity
and hyper IgE syndrome (21-23).

The same B6.TCR-Vγ4-/-/6-/- mice also displayed dysregulated
IL-4 production. Thus, their in vitro induced T cells (both γδ
and αβ T cells) were capable of producing this cytokine in larger
quantity than wt counterparts, and at least the IL-4-producing γδ
T cells were more frequent. Among γδ T cells, mainly Vγ1pos cells
are associated with IL-4 production, especially a Vγ1pos NKT-like
subset distinguished by co-expression of Vδ6 (26, 40, 41), and
such cells were relatively and absolutely increased in B6.TCR-
Vγ4-/-/6-/- mice. Moreover, B6.TCR-Vγ4-/-/6-/- mice showed in-
creased in vivo production of IL-4, measured using the Cincinnati
cytokine capture assay (42), and corresponding elevated expres-
sion of the IL-4-inducible MHCII and CD23 molecules on B cells
and IL-4Rα (mainly) on T cells, together with increased systemic
levels of the IL-4-dependent IgG1 and IgE antibodies, as well
as decreased expression of the IL-4-regulated B cell inhibitory
cell surface receptors CD5, CD22 and CD32 (33, 34). Inversely,
the “complementary” B6.TCR-Vγ1-/- mice were deficient of IL-
4 producing γδ T cells. Taken together, these findings indicate
that γδ T cells and their crosstalk control IL-4 levels in non-
immunized mice.

Several studies strongly implicate IL-4 in the breakdown of
B cell tolerance. Thus, it was shown that IL-4 promotes Stat6-
dependent survival of auto-reactive B cells in vivo (43). Further,
as already mentioned, IL-4 reduces expression of the inhibitory
receptors CD5 (34) as well as CD22, FcγammaRII (CD32), CD72
and paired immunoglobulin-like receptor (PIR)-B on B cells, also
mediated through Stat6, and IL-4 abrogates the inhibitory effects
that ensues when FcγRII or CD22 and BCR are co-ligated (33).
More recently, it was found that IL-4 produces Fas-resistance in
B cells, and a breakdown of B cell tolerance in vivo with autoan-
tibody formation, proteinuria and tissue damage (44). Moreover,
it was shown that IL-4 regulates Bim expression, promotes B cell
maturation in synergy with BAFF, and confers resistance to B cell
death at negative selection checkpoints (45). In IL-4 transgenic
mice, constitutive expression of this cytokine causes autoimmune-
type disorders (32). All of these observations indicate that IL-
4 plays a critical role in B cell tolerance, and suggest that
dysregulated IL-4 production in B6.TCR-Vγ4-/-/6-/- mice might
be responsible for their autoimmune phenotype (elevated anti-
chromatin, anti-nuclear, anti-dsDNA/histone, anti-ssDNA and
anti-cytoplasmic antibodies). The phenotype of IL-4-deficient
B6.TCR-Vγ4-/-/6-/- mice supports this idea. This deficiency abro-
gated elevated antibody levels including IgE, anti-chromatin and
autoantibodies, and normalized nearly all of the examined im-
mune features in B6.TCR-Vγ4-/-/6-/- mice. Consistently, purified
transferred γδ T cells from B6.TCR-Vγ4-/-/6-/- /IL-4-/- mice no
longer induced anti-chromatin Ig.

It is not clear which in vivo cellular sources of IL-4 are
critical. Some of our data indicating that αβ T cells are not
required in the antibody phenotype of partially γδ-deficient mice
would suggest that IL-4 from αβ T cells is not critical. Instead,
γδ T cells could be a critical source of IL-4, at least initially.
Consistently, whereas adoptive transfer of splenic γδ T cells from
B6.TCR-Vγ4-/-/6-/- mice to γδT cell-deficient recipients (B6.TCR-
δ-/-) raised serum levels of αβ T cell-dependent anti-chromatin Ig,
adoptively transferred γδ T cells from B6.TCR-Vγ4-/-/6-/- /IL-4-/-

mice failed to do so.

In conclusion, it appears that IL-4 is a critical mediator of
the γδ-dependent humoral immune changes seen in B6.TCR-
Vγ4-/-/�-/- mice and in the “complementary” B6.TCR-Vγ1-/- mice.
With experimental evidence at hand indicating that crosstalk
between γδ T cells affects IL-4 production and protects B cell
tolerance in non-immunized mice, the focus shifts to the ques-
tions of the nature, timing and place of this crosstalk between γδ
T cells, and of the γδ T cell-B cell interaction that is shaped by it.
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Methods
Mice. C57BL/6 mice and several mutant strains of the same genetic back-
ground (B6.TCR-β-/-, B6.TCR-δ-/-, B6.TCR-δ-/-/TCR-β-/-) were originally obtained
from The Jackson Laboratory and bred at NJH. TCR-Vγ4-/-/Vγ6-/- mice were a
gift from Dr. K. Ikuta (Kyoto University, Kyoto, Japan), were then backcrossed
onto the C57BL/6 genetic background, and used after 11 backcross genera-
tions. B6.TCR-Vγ1-/- mice were a gift from Dr. Simon Carding and distributed
by Dr. C. Wayne Smith. Double knockout (KO) mice were generated by
crossing the corresponding mutant strains and selecting double KO mice in
the F2 generation. These mice (TCR-Vγ4-/-/Vγ6-/-/TCR-β-/-, TCR-Vγ4-/-/Vγ6-/-/IL-
4-/-) were then bred as new homozygous strains. All mice were cared for at
National Jewish Health (NJH) (Denver, CO), following guidelines for normal
and immune deficient animals, and all experiments were conducted under a
protocol approved by the Institutional Animal Care and Use Committee.

Serum antibody levels. ELISAs for detecting total Ig and subclasses were
performed by coating Immulon 2 HB plates (Fisher Scientific Inc, MA) with
polyclonal goat anti-mouse Ig κ (Bethyl Laboratories, TX). Sera were added
at starting dilutions from 1:1,000 to 1:50,000, followed by 2- fold serial dilu-
tions. Subsequently, serum Ig was detected with polyclonal HRP conjugated
goat anti-mouse Ig(H+L), anti-IgM, anti-IgG1, anti-IgG2b, anti-IgG3, and anti-
IgA (Southern Biotechnology, AL). Serum IgG2c was detected using cross-
reactive HRP conjugated goat anti-mouse IgG2a (Southern Biotechnology,
AL) (46). An anti-chromatin Ab ELISA was established using purified chro-
matin (47) to capture chromatin-specific antibodies in the serially diluted
serum. Captured antibodies were then detected with polyclonal HRP conju-
gated goat anti-mouse Ig(H+L). Total IgE levels were measured by a sandwich
ELISA using rat anti-mouse IgE at 2 μg/ml (clone R35-72; BD Biosciences) as
a capture Ab, and biotinylated rat anti-mouse IgE H chain mAb (clone R35-
118; BD Biosciences) at 2 μg/ml as detecting Ab, followed by streptavidin-
conjugated HRP. All plate-bound HRP-conjugated antibodies were detected
by tetramethylbenzidine substrate solution (Life Technologies, MD), read us-
ing a VERSAmax tunable microplate reader, and processed using SoftMax Pro
4.7.1 software. Serum levels of anti dsDNA/histone and anti ssDNA antibodies
were measured as previously described (47). Measurement of antibodies in
the presence of histone alone (Fig. S2C) confirmed that most of the anti
dsDNA/histone antibodies were specific for dsDNA or the dsDNA/histone
complex but not histone alone.

In vivo production of IL-4. In vivo production of IL-4 was measured using
the Mouse IL-4 In Vivo Capture Assay Set (BD Pharmingen), following the
method of Finkelman & Morris (42).

Fluorescent test for autoantibodies. Sera were tested for autoreac-
tivity against fixed HEp-2 liver cells (Bio-Rad Laboratories) as previously
described (24). Briefly, slides with attached HEp-2 cells were incubated with
diluted serum samples for 30 min at RT, washed with PBS for 5 min, and
incubated with FITC-labeled rat anti-mouse Ig κ antibody (1�1000; clone
187.1,�Southern Biotech) for 30 min. After washing, slides were mounted
with Fluoro-Gel II containing DAPI (Electron Microscopy Sciences, PA). Pic-
tures were taken with an inverted microscope (Axiovert 200M; Carl Zeiss, Inc.)
at 20x magnification. A montage of images was assembled using Slidebook
4.1 software (Intelligent Innovations Inc.).

Histological analysis 6-μm sections of frozen spleen embedded in Tissue-
Tek OCT compound (Sakura Finetek USA, CA) were fixed in acetone, dried,
and kept at −80°C. Sections were rehydrated in PBS and incubated in blocking
buffer (PBS, 10% normal rat serum) at room temperature (20 min) in a humid-
ified chamber. Slides were then stained simultaneously with FITC conjugated
peanut agglutinin (PNA; Vector Laboratories, CA) and PE conjugated anti-
mouse B220 (clone RA3-6B2; Biolegend) in staining buffer (PBS, 2% FCS, 0.1%
sodium azide) and washed 2 times by PBS immersion (5 min). Stained slides
were mounted with Biomeda Gel/Mount (Fisher Scientific, Pittsburgh, PA)

and viewed with an inverted Zeiss 200M confocal microscope at 25°C. Images
were collected with Slidebook software (Intelligent Imaging Innovations,
CO).

Flow cytometric analysis. Cells obtained from single cell suspen-
sions (2x105/well) were stained in 96 well plates (Falcon; BD Biosciences,
Franklin Lakes, NJ) for the cell surface markers shown in the fig-
ures/tables, using the specific mAbs and�erivatized�eagents listed in Table
S3.�Of�note,�CD93�os cells �ere �etec��d using mAb�AA4.1.

Live cells were always gated based on forward and side scatter (lym-
phocyte gate), and unless indicated otherwise, forward scatter height and
amplitude, and side scatter width and amplitude (to exclude or specifically
include cellular conjugates), as well as expression of various B-�or T cell
markers, or markers for granulocytes. All samples were analyzed on a LSRII
flow cytometer, counting a minimum of 25,000 events per gated region, and
the data were processed using FlowJo 9.5.2 software (Tree Star).

T cell purification and adoptive transfer. �uspensions of splenocytes
were prepared by mechanical dispersion, treated with Gey’s red cell lysis
solution and passed through nylon wool columns to obtain T lymphocyte-
enriched cell preparations, as previously described (14). Enriched cells were
then incubated with biotinylated anti TCR antibodies (mAb GL3, anti TCR-
δ) for 15 min at 4oC, washed and incubated with streptavidin-conjugated
magnetic beads (Streptavidin Microbeads; Miltenyi Biotec, Bergisch Glad-
bach, Germany) for 15 min at 4oC, and passed through magnetic columns to
purify total γδ T cells, as previously described in detail (48). This produced cell

populations containing >85% viable γδ T cells as determined by dye exclusion
and staining with specific anti TCR mAbs. The purified cells were then washed
in PBS and re-suspended to a concentration of 2.5x107 cells/ml in PBS, and
5x106 cells/mouse were injected in 200 μl PBS via the tail vein of the transfer
recipient.

Throughout this article, we use the nomenclature for murine TCR-Vγ
genes introduced by Heilig and Tonegawa (49).

Treatment with antibodies against the TCR. Mice were injected with
antibodies against the TCR as previously described (14, 20). Briefly, antibodies
purified from hybridoma culture supernatants using a protein G-Sepharose
affinity column (Pharmacia Biotech, Upsala, Sweden) were injected via the
tail vein at 200 μg/mouse in 200 μl PBS, and effects of the treatment were
analyzed 14 days later, as indicated in the Figures. We used mAb H57.597.2
specific for TCR-β (50) for the targeting of αβ T cells,�and�mAbs UC3 (anti
mouse Vγ4) (51) and 2.11 (anti mouse Vγ1) (52) for targeting the respective
subsets of γδ T cells.

Statistical analysis. Data are presented as means +/- SEM. The unpaired t
test was used for two group comparisons, and ANOVA was used for analysis
of differences in three or more groups. Statistically significant levels are
indicated as follows: p < 0.05, p < 0.01, p < 0.001.

Acknowledgments.
We thank Drs.�Roberta Pelanda and Raul Torres for expert advice and

critical discussion of the data, Dr. C. Wayne Smith for providing mice, and
Shirley Sobus and Joshua Loomis for expert help with flow cytometry and mi-
croscopy. This work was supported by the National Institutes of Health grants
R21 AI095765 to W.K.B., and R21 AI097962 and RO1 EY021199 to R.L.O.
Author Contributions Y.H. and W.K.B planned the studies and prepared
the manuscript, Y.H. performed most of the experiments, R.A.H. and A.G.
performed some experiments, T�O.D., G.K., A.G., T.L.C. and M.K.A. helped
with experiments and provided technical support, S.R.C. and K.I. provided γδ
T cell-deficient mice,�H.H�� L.J.W�, J.C.C� and R.L.O. helped with the
study design and read the manuscript, and R.L.O. generated several of the
recombinant backcrossed �ouse-strains used, and edited the manuscript.

1. Bonneville M, O'Brien RL, & Born WK (2010) Gammadelta T cell effector functions: a blend
of innate programming and acquired plasticity. Nature Reviews Immunology 10:467-478.

2. Born WK, Huang Y, Jin N, Huang H, & O'Brien RL (2010) Balanced approach of gam-
madelta T cells to type 2 immunity. Immunology and Cell biology 88:269-274.

3. Hayday AC, et al. (1985) Structure, organization, and somatic rearrangement of T cell gamma
genes. Cell 40:259-269.

4. Chien Y-H, et al. (1987) T-cell receptor δ gene rearrangements in early thymocytes. Nature
330:722-727.

5. Bank I & Marcu-Malina V (2013) Quantitative peripheral blood perturbations of gam-
madelta T cells in human disease and their clinical implications. Clinic Rev Allerg Immunol
DOI 10.1007/s12016-013-8391-x.

6. Parker CM, et al. (1990) Evidence for extrathymic changes in the T cell receptor γ/δ
repertoire. J Exp Med 171:1597-1612.

7. Havran W & Allison JP (1988) Developmentally ordered appearance of thymocytes express-
ing different T cell antigen receptors. Nature 335:443-445.

8. Huber SA, Graveline D, Newell MK, Born WK, & O'Brien RL (2000) Vγ1+ T cells suppress
and Vγ4+ T cells promote susceptibility to coxsackievirus B3-induced myocarditis in mice. J.
Immunology 165:4174-4181.

9. O'Brien RL, et al. (2007) Gammadelta T cell receptors: functional correlations. Immunol.
Rev. 215:77-88.

10. Huang Y, et al. (2009) The influence of IgE-enhancing and IgE-suppressive gammadelta T
cells changes with exposure to inhaled ovalbumin. J.Immunol. 183:849-855.

11. Ribot JC, et al. (2009) CD27 is a thymic determinant of the balance between interferon-
gamma- and interleukin-17-producing gammadelta T cell subsets. Nature Immunology
10:427-436.

12. Haas W, Pereira P, & Tonegawa S (1993) Gamma/delta T cells. Annu. Rev. Immunol. 11:637-
685.

13. Sperling AI, Cron RQ, Decker DC, Stern DA, & Bluestone JA (1992) Peripheral T cell
receptor γδ variable gene repertoire maps to the T cell receptor loci and is influenced by
positive selection. J. Immunol. 149:3200-3207.

14. Hahn Y-S, et al. (2004) Different potentials of γδ T cell subsets in regulating airway respon-
siveness: Vγ1+ cells, but not Vγ4+ cells, promote airway hyperreactivity, TH2 cytokines, and
airway inflammation. J.Immunol. 172:2894-2902.

15. Hao J, et al. (2011) Regulatory role of Vgamma1 gammadelta T cells in tumor immunity
through Il-4 production. J. Immunol. 187:4979-4986.

16. Sunaga S, Maki K, Komagata Y, Miyazaki J-I, & Ikuta K (1997) Developmentally ordered
V-J recombination in mouse T cell receptor γ locus is not perturbed by targeted deletion of
the Vγ4 gene. J. Immunol. 158:4223-4228.

17. Andrew EM, et al. (2005) Delineation of the function of a major gamma delta T cell subset
during infection. J.Immunol. 175:1741-1750.

18. Itohara S, et al. (1993) T cell receptor delta gene mutant mice: independent generation of
alpha beta T cells and programmed rearrangements of gamma delta TCR genes. Cell 72:337-
348.

19. Hahn Y-S, et al. (2003) Vγ4+ T cells regulate airway hyperreactivity to methacholine in

1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156

Footline Author PNAS Issue Date Volume Issue Number 9

1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224



Submission PDF

ovalbumin-sensitized and challenged mice. J.Immunol. 171:3170-3178.
20. Carbone A, et al. (1991) Alpha beta T lymphocyte depleted mice, a model for γδT lymphocyte

functional studies. Immunol Rev 120:35-50.
21. Kashiwakura J, et al. (2009) Polyclonal IgE induces mast cell survival and cytokine production.

Allergology International 58:411-419.
22. Asai K, et al. (2001) Regulation of mast cell survival by IgE. Immunity 14:791-800.
23. Yong PF, et al. (2012) An update on the hyper-IgE syndromes. Arthritis Res Ther 14:228-237.
24. Guo W, et al. (2010) Somatic hypermutation as a generator of antinuclear antibodies in a

murine model of systemic autoimmunity. J.Exp. Med. 207:2225-2237.
25. Huang Y, et al. (2013) Antigen-Specific Regulation of IgE Antibodies by Non-Antigen-

Specific gammadelta T Cells. J Immunol 190(3):913-921.
26. Gerber DJ, et al. (1999) IL-4-producing γδ T cells that express a very restricted TCR

repertoire are preferentially localized in liver and spleen. J. Immunol. 163:3076-3082.
27. Finkelman FD, et al. (1988) IL-4 is required to generate and sustain in vivo IgE responses. J.

Immunol. 141:2335-2341.
28. Felices M, Yin CC, Kosaka Y, Kang J, & Berg LJ (2009) Tec kinase Itk in gammadelta T cells

is pivotal for controlling IgE production in vivo. Proc. Natl. Acad. Sci. (USA) 106:8308-8313.
29. Qi Q, et al. (2009) Enhanced development of CD4+ gammadelta T cells in the absence of

Itk results in elevated IgE production. Blood 114:564-571.
30. Paul WE & Ohara J (1987) B-cell stimulatory factor-1/Interleukin 4. Annu Rev Immunol

5:429-459.
31. Singh RR, et al. (2003) Differential contribution of IL-4 vs STAT4 to the development of

lupus nephritis. J. Immunol. 170:4818-4825.
32. Erb K, et al. (1997) Constitutive expression of interleukin (IL)-4 in vivo causes autoimmune-

type disorders in mice. Journal of Experimental Medicine 185:329-339.
33. Rudge EU, Cutler AJ, Pritchard NR, & Smith KGC (2002) Interleukin 4 reduces expression

of inhibitory receptors on B cells and abolishes CD22 and FcgammaRII-mediated B cell
suppression. Journal of Experimental Medicine 195:1079-1085.

34. Hidaka T, et al. (1992) Il-4 down-regulates the surface expression of CD5 on B cells and
inhibits spontaneous immunoglobulin and IgM-rheumatoid factor production in patients
with rheumatoid arthritis. Clin. Exp. Immunol. 89:223-229.

35. Ismail AS, et al. (2011) Gammadelta intraepithelial lymphocytes are essential mediators of
host-microbial homeostasis at the intestinal mucosal surface. Proceedings of the National
Academy of Sciences of the United States of America 108:8743-8748.

36. Cohen PL & Ziff M (1977) Abnormal polyclonal B cell activation in NZB/NZW F1 mice. J.
Immunol. 119:1534-1537.

37. Goldings EA, Cohen PL, McFadden SF, Ziff M, & Vitetta ES (1980) Defective B cell
tolerance in adult (NZB x MZW)F1 mice. Journal of Experimental Medicine 152:730-735.

38. Hirose S, Maruyama N, Ohta K, & Shirai T (1980) Polyclonal B cell activation and autoim-
munity in New Zealand mice. I. Natural thymocytotoxic autoantibody (NTA). J. Immunol.
125:610-615.

39. Izui S, McConahey PJ, & Dixon FJ (1978) Increased spontaneous polyclonal activation of B
lymphocytes in mice with spontaneous autoimmune disease. J. Immunol. 121:2213-2219.

40. Azuara V, Levraud JP, Lembezat MP, & Pereira P (1997) A novel subset of adult gamma delta
thymocytes that secretes a distinct pattern of cytokines and expresses a very restricted T cell
receptor repertoire. European Journal of Immunology 27:544-553.

41. Grigoriadou K, Boucontet L, & Pereira P (2003) Most IL-4-producing gamma delta thymo-
cytes of adult mice originate from fetal prepursors. J. Immunol. 171:2413-2420.

42. Finkelman FD & Morris SC (1999) Development of an assay to measure in vivo cytokine
production in the mouse. International Immunology 11:1811-1818.

43. Morris SC, Draqula NL, & Finkelman FD (2002) IL-4 promotes Stat6-dependent survival of
autoreactive B cells in vivo without inducing autoantibody production. J. Immunol. 169:1696-
1704.

44. Foote LC, et al. (2004) Interleukin-4 produces a breakdown in vivo with autoantibody
formation and tissue damage. Autoimmunity 37:569-577.

45. Granato A, Havashi EA, Baptista BJ, Bellio M, & Nobrega A (2014) IL-4 regulates Bim
expression and promotes B cell maturation in synergy with BAFF conferring resistance to
cell death at negative selection checkpoints. J. Immunol. 192:5761-5775.

46. Patterson HC, et al. (2011) Cytoplasmic Ig alpha serine/threonines fine-tune Ig alpha tyrosine
phosphorylation and limit bone marrow plasma cell formation. J.Immunol. 187:2853-2858.

47. Guth AM, Zhang X, Smith D, Detanico T, & Wysocki LJ (2003) Chromatin specificity of anti-
double-stranded DNA antibodies and a role for Arg residues in the third complementarity-
determining region of the heavy chain. J. Immunol. 171:6260-6266.

48. Jin N, et al. (2005) Mismatched antigen prepares gd T cells for suppression of airway
hyperresponsiveness. J. Immunol. 174:2671-2679.

49. Heilig JS & Tonegawa S (1986) Diversity of murine gamma genes and expression in fetal and
adult T lymphocytes. Nature 322:836-840.

50. Kubo RT, Born W, Kappler JW, Marrack P, & Pigeon M (1989) Characterization of a
monoclonal antibody which detects all murine αβ T cell receptors. J Immunol 142:2736-2742.

51. Dent AL, et al. (1990) Self-reactive γδ T cells are eliminated in the thymus. Nature 343:714-
719.

52. Pereira P, Gerber D, Huang SY, & Tonegawa S (1995) Ontogenic development and tissue
distribution of Vγ1-expressing γ/δ T lymphocytes in normal mice. Journal of Experimental
Medicine 182:1921-1930.

1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292

10 www.pnas.org --- --- Footline Author

1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360


