11 research outputs found

    The Alzheimer’s disease γ-secretase generates higher 42:40 ratios for β-amyloid than for p3 peptides

    Get PDF
    Alzheimer’s disease is characterized by intracerebral deposition of β-amyloid (Aβ). While Aβ40 is the most abundant form, neurotoxicity is mainly mediated by Aβ42. Sequential cleavage of amyloid precursor protein (APP) by β- and γ-secretases gives rise to full-length Aβ (Aβ1-x) and N-terminally truncated Aβ′ (Aβ11-x) whereas cleavage by α- and γ-secretases leads to the shorter p3 peptides (Aβ17-x). We uncovered significantly higher ratios of 42- versus 40-ending variants for Aβ and Aβ′ than for p3 secreted by mouse neurons and human induced pluripotent stem cell (iPSC)-derived neurons or produced in a cell-free γ-secretase assay with recombinant APP-CTFs. The 42:40 ratio was highest for Aβ′, followed by Aβ and then p3. Mass spectrometry analysis of APP intracellular domains revealed differential processing of APP-C83, APP-C89, and APP-C99 by γ-secretase already at the ε-cleavage stage. This mechanistic insight could aid in developing substrate-targeted modulators of APP-C99 processing to specifically lower the Aβ42:Aβ40 ratio without compromising γ-secretase function

    The metalloprotease ADAMTS4 generates N-truncated Aβ4–x species and marks oligodendrocytes as a source of amyloidogenic peptides in Alzheimer’s disease

    Get PDF
    Brain accumulation and aggregation of amyloid-β (Aβ) peptides is a critical step in the pathogenesis of Alzheimer’s disease (AD). Full-length Aβ peptides (mainly Aβ1–40 and Aβ1–42) are produced through sequential proteolytic cleavage of the amyloid precursor protein (APP) by β- and γ-secretases. However, studies of autopsy brain samples from AD patients have demonstrated that a large fraction of insoluble Aβ peptides are truncated at the N-terminus, with Aβ4–x peptides being particularly abundant. Aβ4–x peptides are highly aggregation prone, but their origin and any proteases involved in their generation are unknown. We have identified a recognition site for the secreted metalloprotease ADAMTS4 (a disintegrin and metalloproteinase with thrombospondin motifs 4) in the Aβ peptide sequence, which facilitates Aβ4–x peptide generation. Inducible overexpression of ADAMTS4 in HEK293 cells resulted in the secretion of Aβ4–40 but unchanged levels of Aβ1–x peptides. In the 5xFAD mouse model of amyloidosis, Aβ4–x peptides were present not only in amyloid plaque cores and vessel walls, but also in white matter structures co-localized with axonal APP. In the ADAMTS4−/− knockout background, Aβ4–40 levels were reduced confirming a pivotal role of ADAMTS4 in vivo. Surprisingly, in the adult murine brain, ADAMTS4 was exclusively expressed in oligodendrocytes. Cultured oligodendrocytes secreted a variety of Aβ species, but Aβ4–40 peptides were absent in cultures derived from ADAMTS4−/− mice indicating that the enzyme was essential for Aβ4–x production in this cell type. These findings establish an enzymatic mechanism for the generation of Aβ4–x peptides. They further identify oligodendrocytes as a source of these highly amyloidogenic Aβ peptides

    Inhibition of Notch pathway arrests PTEN-deficient advanced prostate cancer by triggering p27-driven cellular senescence

    Get PDF
    Activation of NOTCH signalling is associated with advanced prostate cancer and treatment resistance in prostate cancer patients. However, the mechanism that drives NOTCH activation in prostate cancer remains still elusive. Moreover, preclinical evidence of the therapeutic efficacy of NOTCH inhibitors in prostate cancer is lacking. Here, we provide evidence that PTEN loss in prostate tumours upregulates the expression of ADAM17, thereby activating NOTCH signalling. Using prostate conditional inactivation of both Pten and Notch1 along with preclinical trials carried out in Pten-null prostate conditional mouse models, we demonstrate that Pten-deficient prostate tumours are addicted to the NOTCH signalling. Importantly, we find that pharmacological inhibition of γ-secretase promotes growth arrest in both Pten-null and Pten/Trp53-null prostate tumours by triggering cellular senescence. Altogether, our findings describe a novel pro-tumorigenic network that links PTEN loss to ADAM17 and NOTCH signalling, thus providing the rational for the use of γ-secretase inhibitors in advanced prostate cancer patients

    Zinc and Copper Differentially Modulate Amyloid Precursor Protein Processing by -Secretase and Amyloid- Peptide Production

    No full text
    Recent evidence suggests involvement of biometal homeostasis in the pathological mechanisms in Alzheimer's disease (AD). For example, increased intracellular copper or zinc has been linked to a reduction in secreted levels of the AD-causing amyloid- peptide (A). However, little is known about whether these biometals modulate the generation of A. In the present study we demonstrate in both cell-free and cell-based assays that zinc and copper regulate A production by distinct molecular mechanisms affecting the processing by -secretase of its A precursor protein substrate APP-C99. We found that Zn2+ induces APP-C99 dimerization, which prevents its cleavage by -secretase and A production, with an IC50 value of 15 m. Importantly, at this concentration, Zn2+ also drastically raised the production of the aggregation-prone A43 found in the senile plaques of AD brains and elevated the A43:A40 ratio, a promising biomarker for neurotoxicity and AD. We further demonstrate that the APP-C99 histidine residues His-6, His-13, and His-14 control the Zn2+-dependent APP-C99 dimerization and inhibition of A production, whereas the increased A43:A40 ratio is substrate dimerization-independent and involves the known Zn2+ binding lysine Lys-28 residue that orientates the APP-C99 transmembrane domain within the lipid bilayer. Unlike zinc, copper inhibited A production by directly targeting the subunits presenilin and nicastrin in the -secretase complex. Altogether, our data demonstrate that zinc and copper differentially modulate A production. They further suggest that dimerization of APP-C99 or the specific targeting of individual residues regulating the production of the long, toxic A species, may offer two therapeutic strategies for preventing AD

    The lipidome associated with the γ-secretase complex is required for its integrity and activity

    No full text
    γ-Secretase is a multi-subunit membrane protease complex that catalyses the final intramembrane cleavage of the β-amyloid precursor protein (APP) during the neuronal production of amyloid-β peptides (Aβ), which are implicated as the causative agents of Alzheimer's disease (AD). In the present study, we report the reconstitution of a highly purified, active γ-secretase complex into proteoliposomes without exogenous lipids and provide the first direct evidence for the existence of a microenvironment of 53 molecular species from 11 major lipid classes specifically associated with the γ-secretase complex, including phosphatidylcholine and cholesterol. Importantly, we demonstrate that the pharmacological modulation of certain phospholipids abolishes both the integrity and the enzymatic activity of the intramembrane protease. Together, our findings highlight the importance of a specific lipid microenvironment for the structure and function of γ-secretase

    Production of active glycosylation-deficient gamma-secretase complex for crystallization studies

    No full text
    Alzheimer's disease (AD)-associated gamma-secretase is a ubiquitously expressed multi-subunit protease complex embedded in the lipid bilayer of cellular compartments including endosomes and the plasma membrane. Although gamma-secretase is of crucial interest for AD drug discovery, its atomic structure remains unresolved. Gamma-secretase assembly and maturation is a multistep process, which includes extensive glycosylation on nicastrin (NCT), the only g-secretase subunit having a large extracellular domain. These posttranslational modifications lead to protein heterogeneity that likely prevents the three-dimensional (3D) crystallization of the protease complex. To overcome this issue, we have engineered a Chinese hamster ovary (CHO) cell line deficient in complex sugar modifications (CHO lec1) to overexpress the four subunits of g-secretase as a functional complex. We purified glycosylation-deficient g-secretase from this recombinant cell line (CL1-9) and fully glycosylated g-secretase from a recombinant CHO DG44-derived cell line (SS20). We characterized both complexes biochemically and pharmacologically in vitro. Interestingly, we found that the complex oligosaccharides, which largely decorate the extracellular domain of fully glycosylated NCT, are not involved in the proper assembly and maturation of the complex, and are dispensable for the specific generation, in physiological ratios, of the amyloid precursor protein (APP) cleavage products. In conclusion, we propose a novel bioengineering approach for the production of functional glycosylation-deficient g-secretase, which may be suitable for crystallization studies. We expect that these findings will contribute both to solving the high-resolution 3D structure of g-secretase and to structure-based drug discovery for AD. Biotechnol. Bioeng. 2015;112: 2516-2526. (c) 2015 Wiley Periodicals, Inc

    The metalloprotease ADAMTS4 generates N-truncated A4-x species and marks oligodendrocytes as a source of amyloidogenic peptides in Alzheimer's disease

    No full text
    Brain accumulation and aggregation of amyloid- (A) peptides is a critical step in the pathogenesis of Alzheimer's disease (AD). Full-length A peptides (mainly A1-40 and A1-42) are produced through sequential proteolytic cleavage of the amyloid precursor protein (APP) by - and -secretases. However, studies of autopsy brain samples from AD patients have demonstrated that a large fraction of insoluble A peptides are truncated at the N-terminus, with A4-x peptides being particularly abundant. A4-x peptides are highly aggregation prone, but their origin and any proteases involved in their generation are unknown. We have identified a recognition site for the secreted metalloprotease ADAMTS4 (a disintegrin and metalloproteinase with thrombospondin motifs 4) in the A peptide sequence, which facilitates A4-x peptide generation. Inducible overexpression of ADAMTS4 in HEK293 cells resulted in the secretion of A4-40 but unchanged levels of A1-x peptides. In the 5xFAD mouse model of amyloidosis, A4-x peptides were present not only in amyloid plaque cores and vessel walls, but also in white matter structures co-localized with axonal APP. In the ADAMTS4(-/-) knockout background, A4-40 levels were reduced confirming a pivotal role of ADAMTS4 in vivo. Surprisingly, in the adult murine brain, ADAMTS4 was exclusively expressed in oligodendrocytes. Cultured oligodendrocytes secreted a variety of A species, but A4-40 peptides were absent in cultures derived from ADAMTS4(-/-) mice indicating that the enzyme was essential for A4-x production in this cell type. These findings establish an enzymatic mechanism for the generation of A4-x peptides. They further identify oligodendrocytes as a source of these highly amyloidogenic A peptides

    Induction of amyloid-β42 production by fipronil and other pyrazole insecticides

    No full text
    Generation of amyloid β peptides (Aβs) by proteolytic cleavage of the amyloid precursor protein (AβPP), especially increased production of Aβ42/Aβ43 over Aβ40, and their aggregation as oligomers and plaques, represent a characteristic feature of Alzheimer’s disease (AD). In familial AD (FAD), altered Aβ production originates from specific mutations of AβPP or presenilins 1/2 (PS1/PS2), the catalytic subunits of γ-secretase. In sporadic AD, the origin of altered production of Aβs remains unknown. We hypothesize that the ‘human chemical exposome’ contains products able to favor the production of Aβ42/Aβ43 over Aβ40 and shorter Aβs. To detect such products we screened a library of 3500+ compounds in a cell-based assay for enhanced Aβ42/Aβ43 production. Nine pyrazole insecticides were found to induce a β- and γ-secretase-dependent, 3-10 fold increase in the production of extracellular Aβ42 in various cell lines and neurons differentiated from induced pluripotent stem cells derived from healthy and FAD patients. Immunoprecipitation/mass spectrometry analyses showed increased production of Aβs cleaved at positions 42/43, and reduced production of peptides cleaved at positions 38 and shorter. Strongly supporting a direct effect on γ-secretase activity, pyrazoles shifted the cleavage pattern of another γ-secretase substrate, alcadeinα, and shifted the cleavage of AβPP by highly purified γ-secretase towards Aβ42/Aβ43. Focusing on fipronil, we showed that some of its metabolites, in particular the persistent fipronil sulfone, also favor the production of Aβ42/Aβ43 in both cell-based and cell-free systems. Fipronil administered orally to mice and rats is known to be metabolized rapidly, mostly to fipronil sulfone, which stably accumulates in adipose tissue and brain. In conclusion, several widely used pyrazole insecticides enhance the production of toxic, aggregation prone Aβ42/Aβ43 peptides, suggesting the possible existence of environmental “Alzheimerogens” which may contribute to the initiation and propagation of the amyloidogenic process in sporadic AD. <br/
    corecore