46 research outputs found

    Stem cells from human apical papilla decrease neuro-inflammation and stimulate oligodendrocyte progenitor differentiation via activin-A secretion

    Get PDF
    Secondary damage following spinal cord injury leads to non-reversible lesions and hampering of the reparative process. The local production of pro-inflammatory cytokines such as TNF-α can exacerbate these events. Oligodendrocyte death also occurs, followed by progressive demyelination leading to significant tissue degeneration. Dental stem cells from human apical papilla (SCAP) can be easily obtained at the removal of an adult immature tooth. This offers a minimally invasive approach to re-use this tissue as a source of stem cells, as compared to biopsying neural tissue from a patient with a spinal cord injury. We assessed the potential of SCAP to exert neuroprotective effects by investigating two possible modes of action: modulation of neuro-inflammation and oligodendrocyte progenitor cell (OPC) differentiation. SCAP were co-cultured with LPS-activated microglia, LPS-activated rat spinal cord organotypic sections (SCOS), and LPS-activated co-cultures of SCOS and spinal cord adult OPC. We showed for the first time that SCAP can induce a reduction of TNF-α expression and secretion in inflamed spinal cord tissues and can stimulate OPC differentiation via activin-A secretion. This work underlines the potential therapeutic benefits of SCAP for spinal cord injury repair

    High prevalence of autoantibodies to RNA helicase A in Mexican patients with systemic lupus erythematosus

    Get PDF
    Introduction: Autoantibodies to RNA helicase A (RHA) were reported as a new serological marker of systemic lupus erythematosus (SLE) associated with early stage of the disease. Anti-RHA and other autoantibodies in Mexican SLE patients and their correlation with clinical and immunological features were examined.Methods: Autoantibodies in sera from 62 Mexican SLE patients were tested by immunoprecipitation of 35S-labeled K562 cell extract and enzyme-linked immunosorbent assay (anti-U1RNP/Sm, ribosomal P, ?2GPI, and dsDNA). Anti-RHA was screened based on the immunoprecipitation of the 140-kDa protein, the identity of which was verified by Western blot using rabbit anti-RHA serum. Clinical and immunological characteristics of anti-RHA-positive patients were analyzed.Results: Anti-RHA was detected in 23% (14/62) of patients, a prevalence higher than that of anti-Sm (13%, 8/62). Prevalence and levels of various autoantibodies were not clearly different between anti-RHA (+) vs. (-) cases, although there was a trend of higher levels of anti-RHA antibodies in patients without anti-U1RNP/Sm (P = 0.07). Both anti-RHA and -Sm were common in cases within one year of diagnosis; however, the prevalence and levels of anti-RHA in patients years after diagnosis did not reduce dramatically, unlike a previous report in American patients. This suggests that the high prevalence of anti-RHA in Mexican patients may be due to relatively stable production of anti-RHA.Conclusions: Anti-RHA was detected at high prevalence in Mexican SLE patients. Detection of anti-RHA in races in which anti-Sm is not common should be clinically useful. Racial difference in the clinical significance of anti-RHA should be clarified in future studies. � 2010 V�zques-Del Mercado et al; licensee BioMed Central Ltd

    Transformative Materials to Create 3D Functional Human Tissue Models In Vitro in a Reproducible Manner

    Get PDF
    Recreating human tissues and organs in the petri dish to establish models as tools in biomedical sciences has gained momentum. These models can provide insight into mechanisms of human physiology, disease onset, and progression, and improve drug target validation, as well as the development of new medical therapeutics. Transformative materials play an important role in this evolution, as they can be programmed to direct cell behavior and fate by controlling the activity of bioactive molecules and material properties. Using nature as an inspiration, scientists are creating materials that incorporate specific biological processes observed during human organogenesis and tissue regeneration. This article presents the reader with state-of-the-art developments in the field of in vitro tissue engineering and the challenges related to the design, production, and translation of these transformative materials. Advances regarding (stem) cell sources, expansion, and differentiation, and how novel responsive materials, automated and large-scale fabrication processes, culture conditions, in situ monitoring systems, and computer simulations are required to create functional human tissue models that are relevant and efficient for drug discovery, are described. This paper illustrates how these different technologies need to converge to generate in vitro life-like human tissue models that provide a platform to answer health-based scientific questions.</p

    Evaluation of predictive factors for i-CLARAS (intraoperative complications in laparoscopic renal and adrenal surgery): a multicentre international retrospective cohort study

    Get PDF
    The laparoscopic approach represents the standard of treatment for renal and adrenal diseases, and its use is increasing even outside referral centres. Although most procedures are routinely performed, intraoperative complications do not occur, and the rate and predictive factors of these complications have not been established. The aim of this study was to evaluate the incidence and type of intraoperative complications and to identify predictive factors in patients undergoing laparoscopic renal and adrenal surgery. This was a cohort, multicentre, international retrospective study. Patients who underwent laparoscopic renal and adrenal surgeries between April 2017 and March 2022 were included in the study. Bivariate analysis was performed using contingency tables and the χ2 test for independent samples to compare qualitative variables and the T test and Mood test for continuous variables. Multivariate analysis was performed using a logistic regression model to obtain adjusted odds ratios. A total of 2374 patients were included in the study. Intraoperative complications were reported for 8.09% of patients who underwent renal surgery, with the most common complications reported being hollow viscus and vascular complications, and for 6.75% of patients who underwent adrenal surgery, with the most common complication reported being parenchymatous viscous complications. Multivariate analysis revealed that both adrenal and renal surgery radiological preoperative factors, such as invasive features during adrenalectomy and the RENAL score during nephrectomy, are predictive factors of intraoperative complications. In contrast to existing data, surgeon experience was not associated with a reduction in the incidence of perioperative complications

    Evenness mediates the global relationship between forest productivity and richness

    Get PDF
    1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale. 2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richness–productivity relationship. 3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive. 4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explained by low evenness in speciose communities. Productivity generally increases with species richness, until reduced evenness limits the overall increases in community diversity. Our research suggests that evenness is a fundamental component of biodiversity–ecosystem function relationships, and is of critical importance for guiding conservation and sustainable ecosystem management decisions

    Evenness mediates the global relationship between forest productivity and richness

    Get PDF
    1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale. 2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richness–productivity relationship. 3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive. 4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explained by low evenness in speciose communities. Productivity generally increases with species richness, until reduced evenness limits the overall increases in community diversity. Our research suggests that evenness is a fundamental component of biodiversity–ecosystem function relationships, and is of critical importance for guiding conservation and sustainable ecosystem management decisions

    Evenness mediates the global relationship between forest productivity and richness

    Get PDF
    Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale. 2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richness–productivity relationship. 3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive. 4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explained by low evenness in speciose communities. Productivity generally increases with species richness, until reduced evenness limits the overall increases in community diversity. Our research suggests that evenness is a fundamental component of biodiversity–ecosystem function relationships, and is of critical importance for guiding conservation and sustainable ecosystem management decisions. © 2023 The Authors. Journal of Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society

    Central nervous system

    No full text

    Human neural cell interactions with orientated electrospun nanofibers in vitro

    No full text
    Aim: Electrospun nanofibers represent potent guidance substrates for nervous tissue repair. Development of nanofiber-based scaffolds for CNS repair requires, as a first step, an understanding of appropriate neural cell type-substrate interactions. Materials &amp; methods: Astrocyte–nanofiber interactions (e.g., adhesion, proliferation, process extension and migration) were studied by comparing human neural progenitor-derived astrocytes (hNP-ACs) and a human astrocytoma cell line (U373) with aligned polycaprolactone (PCL) nanofibers or blended (25% type I collagen/75% PCL) nanofibers. Neuron–nanofiber interactions were assessed using a differentiated human neuroblastoma cell line (SH-SY5Y). Results &amp; discussion: U373 cells and hNP-AC showed similar process alignment and length when associated with PCL or Type I collagen/PCL nanofibers. Cell adhesion and migration by hNP-AC were clearly improved by functionalization of nanofiber surfaces with type I collagen. Functionalized nanofibers had no such effect on U373 cells. Another clear difference between the U373 cells and hNP-AC interactions with the nanofiber substrate was proliferation; the cell line demonstrating strong proliferation, whereas the hNP-AC line showed no proliferation on either type of nanofiber. Long axonal growth (up to 600 µm in length) of SH-SY5Y neurons followed the orientation of both types of nanofibers even though adhesion of the processes to the fibers was poor. Conclusion: The use of cell lines is of only limited predictive value when studying cell–substrate interactions but both morphology and alignment of human astrocytes were affected profoundly by nanofibers. Nanofiber surface functionalization with collagen significantly improved hNP-AC adhesion and migration. Alternative forms of functionalization may be required for optimal axon–nanofiber interactions
    corecore