80 research outputs found

    Health equity in the New Zealand health care system: a national survey

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>In all countries people experience different social circumstances that result in avoidable differences in health. In New Zealand, Māori, Pacific peoples, and those with lower socioeconomic status experience higher levels of chronic illness, which is the leading cause of mortality, morbidity and inequitable health outcomes. Whilst the health system can enable a fairer distribution of good health, limited national data is available to measure health equity. Therefore, we sought to find out whether health services in New Zealand were equitable by measuring the level of development of components of chronic care management systems across district health boards. Variation in provision by geography, condition or ethnicity can be interpreted as inequitable.</p> <p>Methods</p> <p>A national survey of district health boards (DHBs) was undertaken on macro approaches to chronic condition management with detail on cardiovascular disease, chronic obstructive pulmonary disease, congestive heart failure, stroke and diabetes. Additional data from expert informant interviews on program reach and the cultural needs of Māori and Pacific peoples was sought. Survey data were analyzed on dimensions of health equity relevant to strategic planning and program delivery. Results are presented as descriptive statistics and free text. Interviews were transcribed and NVivo 8 software supported a general inductive approach to identify common themes.</p> <p>Results</p> <p>Survey responses were received from the majority of DHBs (15/21), some PHOs (21/84) and 31 expert informants. Measuring, monitoring and targeting equity is not systematically undertaken. The Health Equity Assessment Tool is used in strategic planning but not in decisions about implementing or monitoring disease programs. Variable implementation of evidence-based practices in disease management and multiple funding streams made program implementation difficult. Equity for Māori is embedded in policy, this is not so for other ethnic groups or by geography. Populations that conventional practitioners find hard to reach, despite recognized needs, are often underserved. Nurses and community health workers carried a disproportionate burden of care. Cultural and diversity training is not a condition of employment.</p> <p>Conclusions</p> <p>There is a struggle to put equity principles into practice, indicating will without enactment. Equity is not addressed systematically below strategic levels and equity does not shape funding decisions, program development, implementation and monitoring. Equity is not incentivized although examples of exceptional practice, driven by individuals, are evident across New Zealand.</p

    An Early Cambrian Rift to Post-Rift Transition in the Cordillera of Western North America

    Get PDF
    The upper Proterozoic and lower Palaeozoic wedge of miogeoclinal strata in the North American Cordillera is widely regarded as evidence for a proto-Pacific passive margin. The rifting history of this margin appears to have been protracted, possibly spanning more than 200 Myr in a tectonic setting that is not well understood. Quantitative subsidence analyses of lower Palaeozoic strata between British Columbia and Utah, however, provide indirect evidence that the transition from rifting to post-rift cooling occurred within a relatively short interval of time, although probably not synchronously, between 600 and 555 Myr. This age is significantly younger than that implied in previous studies. We describe here new field data, which, together with published geological data, provide direct evidence of a latest Proterozoic or early Cambrian age for the rift to post-rift transition. The data support recent arguments for widespread initiation of passive margins around the edge of the North American craton close to the Cambrian-Precambrian boundary

    NT-proBNP for Risk Prediction in Heart Failure:Identification of Optimal Cutoffs Across Body Mass Index Categories

    Get PDF
    OBJECTIVES The goal of this study was to assess the predictive power of N-terminal pro–B-type natriuretic peptide (NT-proBNP) and the decision cutoffs in heart failure (HF) across body mass index (BMI) categories. BACKGROUND  Concentrations of NT-proBNP predict outcome in HF. Although the influence of BMI to reduce levels of NT-proBNP is known, the impact of obesity on prognostic value remains uncertain. METHODS Individual data from the BIOS (Biomarkers In Heart Failure Outpatient Study) consortium were analyzed. Patients with stable HF were classified as underweight (BMI = 40 kg/m(2)) obese. The prognostic rote of NT-proBNP was tested for the endpoints of all-cause and cardiac death. RESULTS The study population included 12,763 patients (mean age 66 +/- 12 years; 25% women; mean left ventricular ejection fraction 33% 113%). Most patients were overweight (n = 5,176), followed by normal weight (n = 4,299), mildly obese (n = 2,157), moderately obese (n = 612), severely obese (n = 314), and underweight (n = 205). NT-proBNP inversely correlated with BMI (beta = -0.174 for 1 kg/m(2); P < 0.001). Adding NT-proBNP to clinical models improved risk prediction across BMI categories, with the exception of severely obese patients. The best cutoffs of NT-proBNP for 5-year all-cause death prediction were lower as BMI increased (3,785 ng/L, 2,193 ng/L, 1,554 ng/L, 1,045 ng/L, 755 ng/L, and 879 ng/L, for underweight, normal weight, overweight, and mildly, moderately, and severely obese patients, respectively) and were higher in women than in men. CONCLUSIONS NT-proBNP maintains its independent prognostic value up to 40 kg/m(2) BMI, and tower optimal risk-prediction cutoffs are observed in overweight and obese patients

    Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy

    Get PDF
    CurePSP Foundation, the Peebler PSP Research Foundation, and National Institutes on Health (NIH) grants R37 AG 11762, R01 PAS-03-092, P50 NS72187, P01 AG17216 [National Institute on Aging(NIA)/NIH], MH057881 and MH077930 [National Institute of Mental Health (NIMH)]. Work was also supported in part by the NIA Intramural Research Program, the German National Genome Research Network (01GS08136-4) and the Deutsche Forschungsgemeinschaft (HO 2402/6-1), Prinses Beatrix Fonds (JCvS, 01–0128), the Reta Lila Weston Trust and the UK Medical Research Council (RdS: G0501560). The Newcastle Brain Tissue Resource provided tissue and is funded in part by a grant from the UK Medical Research Council (G0400074), by the Newcastle NIHR Biomedical Research Centre in Ageing and Age Related Diseases to the Newcastle upon Tyne Hospitals NHS Foundation Trust, and by a grant from the Alzheimer’s Society and Alzheimer’s Research Trust as part of the Brains for Dementia Resarch Project. We acknowledge the contribution of many tissue samples from the Harvard Brain Tissue Resource Center. We also acknowledge the 'Human Genetic Bank of Patients affected by Parkinson Disease and parkinsonism' (http://www.parkinson.it/dnabank.html) of the Telethon Genetic Biobank Network, supported by TELETHON Italy (project n. GTB07001) and by Fondazione Grigioni per il Morbo di Parkinson. The University of Toronto sample collection was supported by grants from Wellcome Trust, Howard Hughes Medical Institute, and the Canadian Institute of Health Research. Brain-Net-Germany is supported by BMBF (01GI0505). RdS, AJL and JAH are funded by the Reta Lila Weston Trust and the PSP (Europe) Association. RdS is funded by the UK Medical Research Council (Grant G0501560) and Cure PSP+. ZKW is partially supported by the NIH/NINDS 1RC2NS070276, NS057567, P50NS072187, Mayo Clinic Florida (MCF)Research Committee CR programs (MCF #90052030 and MCF #90052030), and the gift from Carl Edward Bolch, Jr., and Susan Bass Bolch (MCF #90052031/PAU #90052). The Mayo Clinic College of Medicine would like to acknowledge Matt Baker, Richard Crook, Mariely DeJesus-Hernandez and Nicola Rutherford for their preparation of samples. PP was supported by a grant from the Government of Navarra ("Ayudas para la RealizaciĂłn de Proyectos de InvestigaciĂłn" 2006–2007) and acknowledges the "Iberian Atypical Parkinsonism Study Group Researchers", i.e. Maria A. Pastor, Maria R. Luquin, Mario Riverol, Jose A. Obeso and Maria C Rodriguez-Oroz (Department of Neurology, ClĂ­nica Universitaria de Navarra, University of Navarra, Pamplona, Spain), Marta Blazquez (Neurology Department, Hospital Universitario Central de Asturias, Oviedo, Spain), Adolfo Lopez de Munain, Begoña Indakoetxea, Javier Olaskoaga, Javier Ruiz, JosĂ© FĂ©lix MartĂ­ MassĂł (Servicio de NeurologĂ­a, Hospital Donostia, San SebastiĂĄn, Spain), Victoria Alvarez (Genetics Department, Hospital Universitario Central de Asturias, Oviedo, Spain), Teresa Tuñon (Banco de Tejidos Neurologicos, CIBERNED, Hospital de Navarra, Navarra, Spain), Fermin Moreno (Servicio de NeurologĂ­a, Hospital Ntra. Sra. de la Antigua, Zumarraga, Gipuzkoa, Spain), Ainhoa Alzualde (NeurogenĂ©tics Department, Hospital Donostia, San SebastiĂĄn, Spain)

    Interleukin 12B (IL12B) Genetic Variation and Pulmonary Tuberculosis: A Study of Cohorts from The Gambia, Guinea-Bissau, United States and Argentina

    Get PDF
    We examined whether polymorphisms in interleukin-12B (IL12B) associate with susceptibility to pulmonary tuberculosis (PTB) in two West African populations (from The Gambia and Guinea-Bissau) and in two independent populations from North and South America. Nine polymorphisms (seven SNPs, one insertion/deletion, one microsatellite) were analyzed in 321 PTB cases and 346 controls from Guinea-Bissau and 280 PTB cases and 286 controls from The Gambia. For replication we studied 281 case and 179 control African-American samples and 221 cases and 144 controls of European ancestry from the US and Argentina. First-stage single locus analyses revealed signals of association at IL12B 3â€Č UTR SNP rs3212227 (unadjusted allelic p = 0.04; additive genotypic p = 0.05, OR = 0.78, 95% CI [0.61–0.99]) in Guinea-Bissau and rs11574790 (unadjusted allelic p = 0.05; additive genotypic p = 0.05, OR = 0.76, 95% CI [0.58–1.00]) in The Gambia. Association of rs3212227 was then replicated in African-Americans (rs3212227 allelic p = 0.002; additive genotypic p = 0.05, OR = 0.78, 95% CI [0.61–1.00]); most importantly, in the African-American cohort, multiple significant signals of association (seven of the nine polymorphisms tested) were detected throughout the gene. These data suggest that genetic variation in IL12B, a highly relevant candidate gene, is a risk factor for PTB in populations of African ancestry, although further studies will be required to confirm this association and identify the precise mechanism underlying it

    Patterns and rates of exonic de novo mutations in autism spectrum disorders

    Get PDF
    Autism spectrum disorders (ASD) are believed to have genetic and environmental origins, yet in only a modest fraction of individuals can specific causes be identified1,2. To identify further genetic risk factors, we assess the role of de novo mutations in ASD by sequencing the exomes of ASD cases and their parents (n= 175 trios). Fewer than half of the cases (46.3%) carry a missense or nonsense de novo variant and the overall rate of mutation is only modestly higher than the expected rate. In contrast, there is significantly enriched connectivity among the proteins encoded by genes harboring de novo missense or nonsense mutations, and excess connectivity to prior ASD genes of major effect, suggesting a subset of observed events are relevant to ASD risk. The small increase in rate of de novo events, when taken together with the connections among the proteins themselves and to ASD, are consistent with an important but limited role for de novo point mutations, similar to that documented for de novo copy number variants. Genetic models incorporating these data suggest that the majority of observed de novo events are unconnected to ASD, those that do confer risk are distributed across many genes and are incompletely penetrant (i.e., not necessarily causal). Our results support polygenic models in which spontaneous coding mutations in any of a large number of genes increases risk by 5 to 20-fold. Despite the challenge posed by such models, results from de novo events and a large parallel case-control study provide strong evidence in favor of CHD8 and KATNAL2 as genuine autism risk factors

    Genetic Differences in the Immediate Transcriptome Response to Stress Predict Risk-Related Brain Function and Psychiatric Disorders

    Get PDF
    Depression risk is exacerbated by genetic factors and stress exposure; however, the biological mechanisms through which these factors interact to confer depression risk are poorly understood. One putative biological mechanism implicates variability in the ability of cortisol, released in response to stress, to trigger a cascade of adaptive genomic and non-genomic processes through glucocorticoid receptor (GR) activation. Here, we demonstrate that common genetic variants in long-range enhancer elements modulate the immediate transcriptional response to GR activation in human blood cells. These functional genetic variants increase risk for depression and co-heritable psychiatric disorders. Moreover, these risk variants are associated with inappropriate amygdala reactivity, a transdiagnostic psychiatric endophenotype and an important stress hormone response trigger. Network modeling and animal experiments suggest that these genetic differences in GR-induced transcriptional activation may mediate the risk for depression and other psychiatric disorders by altering a network of functionally related stress-sensitive genes in blood and brain
    • 

    corecore