124 research outputs found

    Phase behavior of selected artificial lipids

    Get PDF
    The flexibility of biomembranes is based on the physical-chemical properties of their main components - glycerophospholipids. The structure of these modular amphiphilic molecules can be modified through organic synthesis making it possible to study specific physical-chemical effects in detail. In particular, the roles of the hydrophobic tails of the phospholipids and their hydrophobic/hydrophilic interfacial backbone on the phase behaviour are highlighted. The spatial orientation of the glycerol backbone changes from sn-1,2 to sn-1,3 phospholipids leading to an increase of the in-plane area of the molecule. The larger distance between the hydrophobic tails can lead to membrane leaflet interdigitation. The introduction of methyl side groups in the hydrophobic tails increases the fluidity of the bilayer. Depending on the position of the methyl branches partial interdigitation is observed. In the case of bolaamphiphiles, methyl side groups have a similar effect on the fluidity, but interdigitation cannot occur

    Zwitterionic Character and Lipid Composition Determine the Behaviour of Glycosylphosphatidylinositol Fragments in Monolayers

    Get PDF
    Glycosylphosphatidylinositols (GPIs) are complex glycolipids found in free form or anchoring proteins to the outer leaflet of the cell membrane in eukaryotes. GPIs have been associated with the formation of lipid rafts and protein sorting on membranes. The presence of a conserved glycan core with cell-specific modifications together with lipid remodelling during biosynthesis suggest that the properties of the glycolipids are being fine-tuned. We synthesized a series of GPI fragments and evaluated the interactions and arrangement of these glycolipids in monolayers as a 2-D membrane model. GIXD and IRRAS analyses showed the need of N-acetylglucosamine deacetylation for the formation of hydrogen bonds to obtain highly structured domains in the monolayers and an effect of the unsaturated lipids in formation and localization of the glycolipids within or between membrane microdomains. These results contribute to understand the role of these glycolipids and their modifications in the organization of membranes

    Rigid urea and self-healing thiourea ethanolamine monolayers

    Get PDF
    A series of long-tail alkyl ethanolamine analogs containing amide-, urea-, and thiourea moieties was synthesized and the behavior of the corresponding monolayers was assessed on the Langmuir–Pockels trough combined with grazing incidence X-ray diffraction experiments and complemented by computer simulations. All compounds form stable monolayers at the soft air/water interface. The phase behavior is dominated by strong intermolecular headgroup hydrogen bond networks. While the amide analog forms well-defined monolayer structures, the stronger hydrogen bonds in the urea analogs lead to the formation of small three-dimensional crystallites already during spreading due to concentration fluctuations. The hydrogen bonds in the thiourea case form a two-dimensional network, which ruptures temporarily during compression and is recovered in a self-healing process, while in the urea clusters the hydrogen bonds form a more planar framework with gliding planes keeping the structure intact during compression. Because the thiourea analogs are able to self-heal after rupture, such compounds could have interesting properties as tight, ordered, and self-healing monolayers

    Bilayer Properties of 1,3-Diamidophospholipids

    Get PDF
    A series of 1,3-diamido phosphocholines was synthesized, and their potential to form stable bilayers was investigated. Large and giant unilamellar vesicles produced from these new lipids form a wide variety of faceted liposomes. Factors such as cooling rates and the careful choice of the liposome preparation method influence the formation of facets. Interdigitation was hypothesized as a main factor for the stabilization of facets and effectively monitored by small-angle X-ray scattering measurements

    Against the rules: pressure induced transition from high to reduced order

    Get PDF
    Envisioning the next generation of drug delivery nanocontainers requires more in- depth information on the fundamental physical forces at play in bilayer membranes. In order to achieve this, we combine chemical synthesis with physical–chemical analytical methods and probe the relationship between a molecular structure and its biophysical properties. With the aim of increasing the number of hydrogen bond donors compared to natural phospholipids, a phospholipid compound bearing urea moieties has been synthesized. The new molecules form interdigitated bilayers in aqueous dispersions and self-assemble at soft interfaces in thin layers with distinctive structural order. At lower temperatures, endothermic and exothermic transitions are observed during compression. The LC1 phase is dominated by an intermolecular hydrogen bond network of the urea moieties leading to a very high chain tilt of 52°. During compression and at higher temperatures, presumably this hydrogen bond network is broken allowing a much lower chain tilt of 35°. The extremely different monolayer thicknesses violate the two-dimensional Clausius–Clapeyron equation

    Correlation of surface pressure and hue of planarizable push-pull chromophores at the air/water interface

    Get PDF
    It is currently not possible to directly measure the lateral pressure of a biomembrane. Mechanoresponsive fluorescent probes are an elegant solution to this problem but it requires first the establishment of a direct correlation between the membrane surface pressure and the induced color change of the probe. Here, we analyze planarizable dithienothiophene push–pull probes in a monolayer at the air/water interface using fluorescence microscopy, grazing-incidence angle X-ray diffraction, and infrared reflection–absorption spectroscopy. An increase of the lateral membrane pressure leads to a well-packed layer of the ‘flipper’ mechanophores and a clear change in hue above 18 mN/m. The fluorescent probes had no influence on the measured isotherm of the natural phospholipid DPPC suggesting that the flippers probe the lateral membrane pressure without physically changing it. This makes the flipper probes a truly useful addition to the membrane probe toolbox
    • …
    corecore