140 research outputs found

    Radial force control for triple three-phase sectored SPM machines. Part II: Open winding fault tolerant control

    Get PDF
    A new advanced fault tolerant control technique for a triple three-phase Surface Permanent Magnet (SPM) machine is investigated in this paper. The machine has a nine-phase winding arranged in three sectors and supplied by three different Voltage Source Inverters (VSIs). The proposed current control technique is firstly exploited to avoid the radial force appearance in case of open winding of one machine sector. Then, the radial force fault tolerant control is improved to compensate for a bearing fault or another source of radial force in this open winding condition. Finite element simulations are used to validate the two proposed control techniques. Finally, advantages and drawbacks of the solution are highlighted

    Radial force control for triple three-phase sectored SPM machines. Part I: Machine model

    Get PDF
    The radial force control technique for a triple three-phase Surface Permanent Magnet (SPM) machine is investigated in this paper. The machine has a nine-phase winding arranged in three sectors and supplied by three different Voltage Source Inverters (VSI). A machine model is developed, based on the multi space vector approach. The multi space vector current control technique is exploited to control the torque and the radial force. The radial force control can be useful to compensate for a bearing fault or for a rotor eccentricity. Finite element simulations are used to validate the model and the control technique. Finally, criticalities of the control and modelling aspects are discussed

    Space vectors and pseudo inverse matrix methods for the radial force control in bearingless multi-sector permanent magnet machines

    Get PDF
    Two different approaches to characterize the torque and radial force production in a Bearingless Multi-Sector Permanent Magnet (BMSPM) machine are presented in this work. The first method consists of modelling the motor in terms of torque and force production as a function of the stationary reference frame α-β currents. The current control reference signals are then evaluated adopting the Joule losses minimization as constrain by means of the pseudo inverse matrix. The second method is based on the control of the magnetic field harmonics in the airgap through the current Space Vector (SV) technique. Once the magnetic field harmonics involved in the torque and force production are determined, the SV transformation can be defined to obtain the reference current space vectors. The methods are validated by numerical simulations, Finite Element Analysis (FEA) and experimental tests. The differences in terms of two Degrees of Freedom (DOF) levitation performance and efficiency are highlighted in order to give the reader an in-depth comparison of the two methods

    Design and control of segmented triple three-phase SPM machines for fault tolerant drives

    Get PDF
    A new multiphase Surface Permanent Magnet (SPM) machine design is investigated in this paper. The machine has a nine-phase winding arranged in three sectors and supplied by three different Voltage Source Inverters (VSI). Stator segmentation between these sectors is analyzed to improve the machine performance and fault tolerant behaviour. A new adaptable control technique is developed for the different segmentation geometries. Finite element simulations are used in order to validate the model and analyse possible layouts. Finally, an optimized design is proposed and the criticalities of the segmentation solution are explained

    A new method for determining the magnetic properties of solid materials employed in unconventional magnetic circuits

    Get PDF
    The mechanical and thermal properties of common, solid (non-laminated) ferromagnetic materials are widely available, but the electro-magnetic characteristics of such solid materials are often undefined. Existing characterization procedures such as the toroidal ring sample test method are capable of mapping the electro-magnetic properties of solid materials quite accurately when investigating materials to be used in conventional magnetic circuits, i.e. where the flux paths and induced eddy currents follow the more common ‘radial’ characteristics as in a standard rotating machine. When solid ferromagnetic material is employed in unconventional machine structures, such as for transverse flux machines or tubular linear machines, simple toroidal test methods do not accurately represent the flux conditions in the stator material. In this paper a new testing method is proposed to accurately impose the correct flux conditions for tubular linear machines. The proposed method uses a simple experimental test setup to characterize the magnetic properties of solid, ferro-magnetic material. The basic experimental results from the new setup are compared to results from 3D finite element analysis

    Distributed speed control for multi-three phase electrical motors with improved power sharing capability

    Get PDF
    This paper proposes a distributed speed control with improved power sharing capability for multi-three phase synchronous machines. This control technique allows the speed to be precisely regulated during power sharing transients among different drives. The proposed regulator is able to control the time constant of the current within the dq0 reference frame to a step input variation. If compared to current set-point step variations, the proposed droop controller minimises device’s stress, torque ripple, and thus mechanical vibrations. Furthermore, since distributed, it shows improved fault tolerance and reliability. The design procedure and the power sharing dynamic have been presented and analysed by means of Matlab/Simulink and validated in a 22kW experimental rig, showing good agreement with the expected performances

    Radial force control of Multi-Sector Permanent Magnet machines considering radial rotor displacement

    Get PDF
    A mathematical model enabling to predict the electromagnetic x-y forces and torque for a given input current in a Multi-Sector Permanent Magnet Synchronous (MSPMS) machine is presented. The rotor static eccentricity is also accounted and the analytical calculations are validated by means Finite Element Analysis (FEA). Furthermore, a novel force and torque control is proposed based on input current minimization and is applied to suppress the Unbalanced Magnetic Pull (UMP) caused by the rotor eccentricity. The effective operation of the force suppression technique is verified by means of FEA

    Distributed current control for multi-three phase synchronous machines in fault conditions

    Get PDF
    Among challenges and requirements of on-going electrification process and future transportation systems there is demand for arrangements with both increased fault tolerance and reliability. Next aerospace, power-train and automotive systems exploiting new technologies are delving for new features and functionalities. Multi-three phase arrangements are one of these novel approaches where future implementation of aforementioned applications will benefit from. This paper presents and analyses distributed current control design for asymmetrical split-phase schemes composed by symmetrical three phase sections with even number of phases. The proposed design within the dq0 reference frame in nominal, open and short circuit condition of one three-phase system is compared with the vector space decomposition technique and further validated by mean of Matlab/Simulink ~R simulations

    Modifications to PM-assisted Synchronous Reluctance Machine to Achieve Rare-Earth Free Heavy-duty Traction

    Get PDF
    Automotive applications require electrical machines designed for high torque density, wide speed range, and low cost. NdFeB magnets can achieve a high torque density and wide speed range, and however, they have a high cost. Therefore, this article explores the capability of rare-earth-free (REF) design through a PM-assisted synchronous reluctance (PM-SynRel) motor. A PM-SynRel design with NdFeB has been used in this study where the NdFeB magnets have been replaced with ferrite magnets. Then, several modifications on the rotor have been made to ensure mechanical safety. Thermal analysis has been conducted last to evaluate the temperatures in the different machine parts to avoid exceeding the required limits. Finally, a prototype has been made and tested to validate the simulation results

    Considerations on the effects that core material machining has on an electrical machine's performance

    Get PDF
    An often-overlooked aspect during the development process of electrical machines, is the validity and accuracy of the machine material properties being used at the design stage. Designers usually consider the data provided by the materials supplier, which is measured on material in an unprocessed state. However, the fact that the machining processes required to produce the finished product (e.g. the stator core) can permanently vary the material properties is very often neglected. This paper therefore deals with and investigates the effects that such processes can have on the overall machine performance. To do this, three sets of material data, based on 1) the materials suppliers’ data, 2) materials data based on conventional characterization methods and 3) materials data based on test samples that include the manufacturing processes, are used to develop three versions of the same baseline machine. The results of these three machines are then compared and the resulting variations of the machine’s performance presented and described. The chosen baseline machine is a high performance and relatively high speed, aerospace, electrical machine. Special attention is focused on the efficiency maps of the machine as this aspect is highly dependent on the material properties that are the most sensitive to manufacturing processes such as the material’s anhysteretic BH curve and its specific core loss
    • …
    corecore