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Abstract – A mathematical model enabling to predict the 
electromagnetic x-y forces and torque for a given input current 
in a Multi-Sector Permanent Magnet Synchronous (MSPMS) 
machine is presented. The rotor static eccentricity is also 
accounted and the analytical calculations are validated by means 
Finite Element Analysis (FEA).  

Furthermore, a novel force and torque control is proposed based 
on input current minimization and is applied to suppress the 
Unbalanced Magnetic Pull (UMP) caused by the rotor 
eccentricity. The effective operation of the force suppression 
technique is verified by means of FEA.  

Index Terms—Radial force control, static eccentricity, 
stiffness matrix. 

I.   INTRODUCTION 

n recent years, permanent magnet synchronous machines 
(PMSMs) have received a growing attention in industrial 

applications such as automotive and aerospace [1] but find 
market also in process applications such as spindles, 
turbocharges, waste heat recovery systems and in pumping 
systems [2]. The study of the eccentricity in such machines is 
particularly interesting because it is one of the causes of 
acoustic noise and undesired vibrations [3]. The static 
eccentricity is one of the typical case study which are of 
interest when comes to investigate the rotor-dynamic of 
rotating components in electrical machines. A not perfect rotor 
centering can be caused, during the manufacturing process, by 
not accurate rotor balancing, bearing tolerances and by a 
misalignment introduced in the assembly process. The rotor 
static eccentricity can result in a reduced lifetime of the 
machine due to bearings wear and additional mechanical 
stresses on the rotating components.  
Various approaches have been proposed to predict and study 
the effect of rotor eccentricity in PMSM. The analytical 
estimation of the flux density in the airgap is a well-known 
technique adopted to predict the electromagnetic forces in an 
electric machine. Several papers dealing with flux density 
prediction in PMSM can be found in the literature [4], [5]. In 
[6], [7] and [8], [9] an approximated method is introduced to 
calculate the flux density for rotor eccentricity and the 
resultant unbalanced radial force for synchronous reluctance 
and PMS motors, respectively. Furthermore, [10] presents a 
very detailed method to analytically calculate UMP exploiting 
the Maxwell stress tensor method. 
In [11] a mathematical model of the torque-force characteristic 
was presented with the hypothesis of centered rotor. It led to 
                                                           

 G. Valente , L. Papini, A. Formentini, C. Gerada, P. Zanchetta, are with 
the PEMC group, University of Nottingham, Nottingham, NG7 2RD, UK (e-
mail: eexgv@exmail.nottingham.ac.uk). 

an efficient radial force-torque control method for the MSPMS 
machine considered. 
In the present work, the mathematical model proposed in [11] 
is elaborated to take the static rotor eccentricity into account. 
Furthermore, a detailed analytical calculation of the 
coefficients of the mathematical model will be studied.  
In particular, the model relies on the airgap flux density 
prediction carried out in [4], [5], [12] for no eccentricity 
condition and [8], [9] for rotor eccentricity levering on the 
Maxwell stress tensors computation [10]. The analytical 
calculation is benchmarked against FEA. The mathematical 
model can be exploited to define a new radial force and torque 
control technique that allows to compensate undesired forces 
and is demonstrated on damping the UMP caused by the rotor 
static eccentricity. 

II.   MACHINE CHARACTERIZATION 

A.   Machine Structure 

A multi-sector three-phase MSPMS machine is considered in 
this work, consisting of a conventional 18 slot – 6 poles 
surface mounted PMSM but with a re-arranged winding 
configuration [11]. The distributed winding featuring a single 
slot/pole/phase are highlighted in Fig. 1 together with the cross 
sectional geometrical structure of the MSPMS machine 
considered. The �� = 3 machine sectors are selected to 
dedicate a single winding set to each pole pair as highlighted 
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Fig. 1.  Cross-section of the 18 slots – 6 poles – 3 sectors 
PMSM considered. 



  

in Fig. 1 featuring a low coupling between winding sets. Table 
I reports the main characteristic of the motor.  

Table I 
MACHINE PARAMETERS 

 

Parameter Value 

Pole number (2p) 6 

PM material NdFeB 

Magnet remanence �� 1.15 [T] 

Magnet relative recoil permeability �� 1.03 

Magnetization type Radial 
Turn/coil 22 

Torque constant (��) 0.128 [Nm/A] 

Line to line voltage constant (��) 15.5 [Vpk/krpm] 
 

GEOMETRICAL PARAMETERS 
 

Axial length �� 91 [mm] 
Inner Stator radius �� 24.75 [mm] 
Mid-airgap Radius �� 24.25 [mm] 

Air-gap length �� 1 [mm] 
Magnets thickness ℎ� 4 [mm] 
Magnet pole-arc to pole-pitch ratio ��  0.78 

Slot-opening �� 2.1 [mm] 

B.   Mathematical model of MSPMS motor  

This section is a brief summary that provides the basis of the 
mathematical model presented in [11]. In this analysis the 
rotor is considered centered and supported by stiff mechanical 
bearings.  
Under the assumptions of linear magnetic behavior of the 
materials and magnetic decoupling between sectors, the 
matrix formulation (1) expresses the generalized mechanical 
wrench of the motor [13] as a function of the stationary 
reference frame current components �� �  and �� �  of each 

sector �. 

 ��(��) = ��,�(��, �� )���  (1) 

where ��(��) = [��(��) ��(��) �(��)]�  is the vector 
collecting the mechanical forces and torque, while ��� =

� �� �   �� �  ⋯  �� �   �� �  ⋯  �
��

�   �
��

��
�
is the vector of the α-

β axis currents. ��  is the geometrical angular position of the 
windings magnetic axis with respect the x-axis and  �� (�� =
���) is the electrical angular position of the rotor magnetic 
axis with respect the winding magnetic axis. The 3 × 2�� 
��,� matrix can be expressed in (2). 

 ��,�(��, �� ) = � �� �,����, �� � ⋯ �
��

�,�(��, �
�� )�         (2) 

where the 3 × 2 matrix ��,�(��, �� ) � of the generic sector 
� can be found in [11]. It consists of a 2 × 2  sub-matrix 
��,�,�(��, �� ) � of the force coefficients and of a 1 × 2  sub-

matrix ��,�
� (��) of the torque coefficients. Each machine 

sector presents the same sub-matrix ��,�
� (��) since the 

torque coefficients only depend on the torque constant �� and 
rotor position ��  [11]. On the other hand, sub-matrix 
��,�,�(��, �� ) � has to be determined for each machine sector. 

Levering on the geometrical and electromagnetic symmetries 
of the motor, ��,�,�(��, �� ) � can be expressed with respect 

of the sub-matrix ��,�,�(��, �� ) � of the reference sector 
(sector 1). As a matter of fact, each machine sector can be 

expressed by multiplying ��,�,�(��, �� ) � by an appropriate 

bi-dimensional rotation matrix �( �� ) defined in [11].  
The current commands required for the motor control can be 
evaluated inverting matrix ��,�. However, ��,� do not result 
in a square matrix, hence in [11] a proper strategy has been 
proposed to optimize the current reference signals targeting 
the joule losses minimization. The Pseudo Inverse of ��,� has 
been introduced in [11] for this purpose and defined as in (3).  

 ��,�
� = ��,�

�  ���,� ��,�
� �

��
        (3) 

The coefficients of the pseudo inverse matrix ��,�
�  can be 

calculated offline to drastically reduce the online computation 
effort needed [11]. The optimized current reference signals 
can be therefore expressed as in (4). 

 ��̅�
� = ��,�

�  (��) ���
∗       (4) 

In the following sections, a detailed analytical method for the 

calculation of the force coefficients of ��,�(��, �� ) � will be 
presented. In addition, the rotor displacement will be taken 
into account allowing to rewrite (1) in a more comprehensive 
formulation. 

III.   FLUX DENSITY PREDICTION 

This section describes the analytical method used to predict 
the open-circuit and armature-reaction flux density at the 
airgap for both centered and eccentric rotor position. The 
analytical calculation of the coefficients of matrix 

��,�(��, �� ) � can be carried out from the main airgap flux 

density and enables to develop the mathematical model 
considering the rotor eccentricity.  
The model is generated assuming 2D flux density distribution. 
Under the assumption of linear magnetic behavior of the soft 
magnetic materials, the superimposition principle can be 
applied. Therefore, the flux density at the mid-airgap can be 
written in polar coordinates as in (5) featuring the dependency 
with respect of the rotor angular position �� and stator angular 
coordinate ��. 

 
��(��,��) = ��,�� (��,��) + ��,�(��,��) 

��(��,��) = ��,�� (��,��) + ��,�(��,��) 
(5) 

where ��  and �� are the radial and tangential components of 
the flux density at the mid-airgap respectively. ��,�� , 

��,��  and ��,�, ��,� are the radial and tangential components 
of the open-circuit and armature-reaction flux density at the 
mid-airgap, respectively.  

 

 
Fig. 2.  Open-circuit airgap flux density for �� = 0 [deg].  



  

A.   No Rotor Displacement 

A comprehensive calculation of the open circuit flux density 
in the airgap for the case of perfectly centered rotor is carried 
out in [4]. The expression, in polar coordinate, is reported in 
(6). 

 

��,�� (��,��) = � ��(�) ��� �� ����(�� − ��)�

�

���,�,�…

��,�� (��,��) = � ��(�) ��� ������(�� − ��)�

�

���,�,�…

 (6) 

where � is the number of pole pairs. Coefficients 
��(�),��� and ���  take into account the main geometry 
features of the motor listed in Table I. Their expressions can 
be found in [12]. The flux density is calculated at the mid-

airgap radius ��. In Fig. 2 the flux density components 

obtained using equation (6) are compared with FEA for �� =
0 and � = 1. 
As far as the flux density due to the armature-reaction is 
concerned, this manuscript adapts the results of [5], achieved 
considering a conventional three-phase winding, to the multi-
sector motor presented. Furthermore, only one machine sector 
(sector 1) has to be characterized in order to calculate the 

coefficients of the matrix ��,�(��, �� ). 

Equation (7) shows the radial and tangential components of 
the flux density produced by one motor phase. 

 

��,��(��,��) = � �
1

�
���������(�)��(��,��)

�

�

 

��,��(��,��) = � �
1

�
���������(�)��(��,��)

�

�

 

(7) 

With � = 2
��

�

��

��
, ��(��,��) = �(��) �� ����� + ����, 

 ��(��,��) = ���(��) ������� + ���� and � = 1,2,3,4,… ∞ . 

Coefficients ����, ��� , �� and �� can be found in [12], 

���(�) is the phase current, �� = �� + ℎ� is the total airgap 

length (including the magnet thickness ℎ� and the physical 

air-gap clearance ��) and ��� is the mechanical angular 

position of the phase axis with respect the x-axis (for instance, 

for sector 1: ��� = 0,��� = − 20 [���],���
= 20 [���]). 

The radial and tangential flux density distributions of one 

winding sector ( ��,�
�  and ��,�

� ) can be obtained summing 

up the contributions of the phases given by (7) and updating 

��� according to the phase considered. However, only ��,�
�  

and ��,�
�  are sufficient to express the sub-matrix 

��,�,�(��, �� ) � of the force coefficients. Fig. 3 and Fig. 4 

show ��,�
�  and ��,�

�  obtained analytically (for � =

1,… ,50) and with FEA for �� � = �����.= 1[�], �� � = 0[�] 

and �� � = 0[�], �� � = �����.= 1[�], respectively. The 

three-phase current pattern can be obtained applying the 
inverse Clarke’s transformation [14]. Since the stator and the 

rotor are considered isotropic ��,�
�  and ��,�

�  are equal ∀ ��. 

B.   Rotor Displacement 

The flux density prediction in the airgap region in the case of 
static rotor eccentricity is the topic of this section. Fig. 5 shows 
a generic rotor displacement geometrical description adopted 
in further calculations. The rotor axis �� appears to be 
translated of the quantity � and angle �� from the stator 
axis ��. 
In order to predict the flux density distribution in the airgap 
when rotor eccentricity occurs, the constant inner stator radius 

�� and middle airgap radius �� have to be replaced by variable 

distances ��� and ���, respectively. Furthermore �� has to be 

 

 
Fig. 3.  Armature-reaction flux density at the airgap produced by �� � =
�����.= 1[�] and �� � = 0[�]. 

 

 
Fig. 4.  Armature-reaction flux density at the airgap produced by �� � =

0[�] and �� � = �����.= 1[�]. 

 

 

 
Fig. 5.  Cross-section of the eccentric rotor with stator and rotor 
reference frames. 



  

updated with ��� [8], [9]. This is the result of the coordinate 
transformation shown in Fig. 5 of a generic point P on the 
stator surface or at the mid-airgap from the stator to the rotor 
reference frame.The aforementioned transformation consists 
of a rotation (8) and a translation (9). 

 �
�′��
�′��

�= �
cos (��) sin (��)
− sin (��) cos (��)

��
���
���

� (8) 

 ��� = �′�� − �        ��� = �′��  (9) 

Where ��� = �� cos(��) and ��� = ��sin (��) are the 

Cartesian coordinates of the point � in the stator reference 

frame while ��� and ���  are the ones in the rotor reference 

frame. ��� and ��� can be now calculated in (10). 

  ��� = ����
� + ���

�        ��� = tan��
���

���
 (10) 

��� can be obtained in the same way using (8), (9) and (10) 

replacing the inner stator radius �� with the mid-airgap radius 

��. From Fig. 5, the angle �� can be written in (11) taking into 

account the transformation introduced. 

 �� ≈ ��� + �� (11) 

Finally, the non-uniform airgap length can be found in (12) 
[9]. 

 �(��) = �� + � · cos(�� − ��) (12) 

IV.   FORCE COEFFICIENTS CALCULATION 

A.   Force coefficients for zero rotor displacement 

This section deals with the analytical calculation of the 

coefficients of matrix ��,�,�(��, �� )�  presented in II.  B.   

The coefficients can be computed using the Maxwell stress 
tensor based on the flux density predicted in the previous 
sections. The radial and tangential stresses are given by (13) 
[10]. 

 
� =

��
� − ��

�

2��

� =
����
��

 (13) 

where �� and �� can be calculated in (5) as the sum of the 
open-circuit and armature-reaction contributions.  
Knowing the radial and tangential stress tensors from (13), the 

expressions of the coefficients of ��,�,�(��, �� )�  are given 

by (14). 

 

��,∗,�
� = ���� �� � cos(��) �� − � � sin(��) ���

��

�

��

�

�

��,∗,�
� = ���� �� � sin(��) �� + � � cos(��) ���

��

�

��

�

�

 (14) 

In (14), subscription * stands for either α- or β-axis current. 
As a matter of fact, four coefficients are required to define the 

2x2 matrix ��,�,�
� : ��,�,� 

� , ��,�,�
�  , ��,�,� 

� and ��,�,�
� . 

Each of them can be obtained adopting a proper current pattern 

for the armature-flux density prediction in (7). For instance, 

��,� 
� and ��,�

�  are obtained with �� � = �����.= 1 [�], 

�� � = 0 [�] and ��,� 
� and ��,�

�  with �� � = 0 [�] and 

�� � = �����.= 1 [�]. In [11] the trends of the four 

coefficients is presented and compared with the ones obtained 
with the FEA showing good agreement in the results. Their 
sinusoidal approximated expressions are reported in (15). 

 

⎩
⎪
⎨

⎪
⎧

��,�,�
� (��,0) = ���,�,�

� cos��� + ��,��        

��,�,�
� (��,0) = ���,�,�

�  cos (�� + ��,�)        

��,�,�
� (��,0) = ���,�,�

�  cos (�� + ��,�)        

��,�,�
� (��,0) = ���,�,�

�  cos (�� + ��,�)        

 (15) 

where ��∗,×,� and  �∗,×,�  are the amplitude and phase shift of 

the force coefficients of the reference sector. Their numerical 
values can be found in [11] and are reported in Table II. 

Table II 
FORCE COEFFICIENTS PARAMETERS 

 � − �  � − � � − � � − � 

��∗,×,� 8.6 9.2 0.7 4.3 

�∗,×,� π �
2�  − �

2�  π 

�∗,×  0.64 0.81 0.2 0.15 

In the next section, ��,�,� 
� , ��,�,�

�  , ��,�,� 
� and ��,�,�

�  are 

calculated taking into account the rotor displacement. Hence, 

a new 2x2 matrix ��,�,�
� , function not only of ��and ��  but 

also the dependency with respect � and ��, will be introduced. 
Furthermore, the matrix formulation (1) will be modified 
introducing the stiffness matrix �(��) to include the rotor 
displacement.  

B.   Force coefficients with rotor displacement 

A maximum displacement of ���� = 0.25 mm  (25% of the 
airgap ��) has being chosen in order to fulfill the force 
capability of the motor. The amplitude of the UMP at ���� is 
around 165[N], corresponding to almost 90% of the force 
capability of the motor. 

The force coefficients of the 2x2 matrix ��,�,�
�  can still be 

calculated using (14) in the case of rotor displacement. 
However, the flux density required to calculate the radial and 
tangential stresses in (13) has to take into account the 
procedure of section III.  B.  Furthermore, the open-circuit x-
y force components have to be calculated in advanced so that 
the force coefficients can be obtained by (16).  

 

��,∗,�
� =

(��,∗ − ��,��)

�� ∗

  

��,∗,�
� =

���,∗ − ��,���

�� ∗

 (16) 

where the subscript * stands for either α- or β-axis current. 
��,�� and ��,�� are the open-circuit x-y force components 

obtained with (14) taking into account the rotor displacement 
and imposing the armature-reaction flux density components 

��,� and ��,� equal to zero. The analytical and FE trends of 

��,�� and ��,�� versus � and ��  are shown in Fig. 6. It allows 



  

defining the stiffness matrix �(��) as follow: 

 �(��) = �
� ��� (��)

� ��� (��)
� (17) 

where � =  655 kN/m.  

Coefficients ��,�,� 
� , ��,�,�

�  , ��,�,� 
� and ��,�,�

�  result 

function not only of the angular rotor position �� but also of 
the displacement information � and ��. Fig. 8 shows the 
coefficient amplitudes as a function of � and �� analytically 
calculated considering the already mentioned � − � current 
supplies. The compact and approximated expressions of the 
force coefficients amplitudes for the generic sector � is given 

in (18) including the information of the angular position ��  of 

the sector � winding. 

 

���,∗,�
� (�,��, ��  ) = ���,∗,�

� + ��,∗
�

����

cos (�� + �� )

���,∗,�
� (�,��, ��  ) = ���,∗,�

� + ��,∗
�

����

cos (�� + �� )

 (18) 

Where the amplitudes ���,∗,�
�  and ���,∗,�

� for centered rotor can 

be obtained multiplying the force matrix ��,�,�
�  of the 

reference sector by the rotation matrix �( �� ). ��,∗ =

���,∗,��� − ���,∗,�
��  and ��,∗ = ���,∗,��� − ���,∗,�

�� . The 

numerical values of the above introduced coefficients are 
given in Table II. It is straightforward to notice from Table II 
that the main contribution to the force production is given by 

coefficients ��,�,� 
� and ��,�,� 

� . Furthermore, it is possible to 

conclude from the same table that the percentages of 

increment (��,∗/ ��,∗,� 
� ) of their amplitudes at ���� are 

relatively small. Their values are around 7.5% and 8.8%, 
respectively. Therefore, the matrix of the force coefficients 

��,�,�(��, �� ,�,��) 
� can be approximated by the matrix 

��,�,�(��, �� )�  calculated with a centered rotor. A further 

motivation for this approximation can be found in the fact that 
the resulting small average error in the force production can 
be easily compensated by a standard PI controller in the case 

of static eccentricity. Additionally, the pseudo inverse of 

��,� can be still calculated offline using (3) reducing the 

computational efforts of the control platform.  

C.   Mathematical model including rotor eccentricity 

This section presents a new mathematical expression that 
takes into account the rotor displacement. In (1) a simple 
matrix formulation of the mechanical outputs as a function of 
the α-β currents was given assuming a centered rotor. In order 
to include an eventual rotor displacement, the stiffness term 
has to be added in the formulation to account for the no load 
x-y force components. Thanks to the approximation 
introduced in the previous section, the rotor displacement 
effect can be neglected in the force coefficients. Furthermore, 
Fig. 7 shows the FE simulation result for nominal torque 
production (�������� = 5 ��) for both zero and maximum 
rotor displacement. It can be observed that the torque 
production is almost the same, only a small difference in the 
torque ripple can be appreciated, justifying the further 
approximation of considering the sub-matrix ��,�

�  
independent from the rotor displacement. Hence, matrix 
��,�, defined in (2), can still be used provided that � ≤ ����. 
The new matrix formulation of the mathematical model is 
given in (19). 

 ��(��,�,��) = ��,�(��)��� + ��(��)� (19) 

Where ��(��) is a three elements vector consisting in 
equation (17) for the first two elements and zero for the third. 
The vector of the currents required to develop the reference 
mechanical outputs with an eventual rotor displacement is 
now given by (20). 

 ��̅�
� = ��,�

� (���
∗ −  ��(��)�)    (20) 

  
Fig. 6  Open-circuit x-y force components. 

 
Fig. 8.  Amplitude of the force coefficients of the reference sector. 

 
Fig. 7.  Torque production for centered and eccentric rotor (� = ����). 
 



  

V.   SIMULATION RESULTS 

In this section the simulation results carried out through FEA 
will be presented. The α-β current commands are obtained 

with (20) for the desired mechanical vector ���
∗ and 

considering a certain rotor displacement. The 2�� phase 
currents result in applying the inverse Clarke transformation 

to vector ��̅�
�  and can be used to supply the FE model of the 

motor. In the following simulations the rotor is shifted of the 
desired displacement from the centered position and rotated 
around its axis. A multi-static 2D non-linear simulation is 
adopted in order to take the motor core saturation into account. 
Fig. 9 shows the resultant force with and without the force 
control for 2 eccentricity conditions. It is possible to 
appreciate how the force control drastically reduces the UMP 
caused by the rotor displacement. 

VI.   CONCLUSION 

This paper presents a mathematical model that defines the 
mechanical output of the MSPMS motor considered in the 
case of rotor eccentricity. The mathematical model has been 
generated by analytically predicting the flux density at the 
mid-airgap for both centered and eccentric rotor and 
computing the result with the Maxwell stress tensor method.  
Finally, the mathematical model has been adopted to create a 
force and torque control technique that allows compensating 
the UMP caused by the rotor displacement. The results 
obtained applying the force and torque control technique 
shows an effective compensation of the UMP. 
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