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Distributed Current Control for Multi-Three Phase
Synchronous Machines in Fault Conditions

A. Galassini, A. Costabeber, M. Degano, and C. Gerada, PEMC group, The University of Nottingham
A. Tessarolo and S. Castellan, Department of Engineering & Architecture, The University of Trieste

Abstract—Among challenges and requirements of on-going
electrification process and future transportation systems there is
demand for arrangements with both increased fault tolerance and
reliability. Next aerospace, power-train and automotive systems
exploiting new technologies are delving for new features and
functionalities. Multi-three phase arrangements are one of these
novel approaches where future implementation of aforementioned
applications will benefit from. This paper presents and analyses
distributed current control design for asymmetrical split-phase
schemes composed by symmetrical three phase sections with even
number of phases. The proposed design within the dq0 reference
frame in nominal, open and short circuit condition of one three-
phase system is compared with the vector space decomposition
technique and further validated by mean of Matlab/Simulink R©

simulations.
Index Terms—Multi-three phase machine, current control,

fault tolerance

I. INTRODUCTION

Electrification of future transportation systems is demanding
for more reliability and fault tolerance than current fossil fuel
solutions are able to guarantee. Nowadays, the multi-three
phase machine concept is gaining popularity [1], [2] thanks to
the repetition of a very well-known system: a two level voltage
source converter controlling a three phase machine with a three
phase set of windings (a,b,c) in Fig. 1. The repetition of this
unit block (or module, or segment) establishes the multi-three
phase machine concept in Fig. 2. The DC/AC converters are
connected in parallel rather than in series. Indeed if wired in
series, a fault in one converter would affect all the others.

The main advantage of the multi-three phase approach is
the reuse of all the know-how regarding different control
strategies, fault detection, fault isolation, and winding design
for the unit block in Fig. 1. Many different solutions, strategies,
and counter measures have been deployed along the years.
Some solutions have taken advantages of additional switches
or diodes introduction, whereas others simply re-configure the
converter control strategy [3]–[5].
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Fig. 1. Module made by one two level voltage source converter, one micro-
controller (not shown), and one three phase sets of windings (a, b, c).

Fig. 2. Multi-three phase motor with paralleled distributed converters.

In this paper, the distributed current control in the dq0
reference frame of a quadruple-star synchronous motor in
nominal and under faulty condition is presented and further
validated using the so called vector space decomposition
technique [6], [7] and Matlab Simulink R© simulations. In the
next section, the machine model in dq0 reference frame [8],
[9] is recalled in order to introduce the subsequent section. In
Sec.III, the current control design in nominal condition within
the dq0 reference frame is detailed and further compared with
the vector space decomposition algorithm. Sec.IV shows how
to re-configure the healthy modules in both open and short cir-
cuit condition avoiding instability issues. The reconfiguration
is needed to guarantee, likewise stability margins, constant
current control loops bandwidth and phase margin. In some
applications, i.e. speed droop control of multi-three phase
machine [10], constant current dynamics are needed. Before
the conclusions in Sec.VI, the control design validation by
means of Matlab/Simulink R© simulations is presented in Sec.V.

II. MACHINE MODELLING

A. Modelling assumptions

The work presented in this paper is based on the assumption
that stator inductances are constant. Therefore, it applies to
electric machines with negligible saturation effects. In addition
it is assumed that:

• all phases are geometrically identical;
• each phase is symmetrical around its magnetic axis;
• the spatial displacement between two whatever phases is

an integer multiple of the phase progression α (Fig.3b);
• within the air-gap, only the fundamental component of

magneto-motive force is considered.
No restrictive assumption is made, instead, about whether the
winding is distributed or concentrated and no leakage flux
component is ignored [8], [9], [11].



B. Winding arrangement

Multi-three phase electrical motors are a particular group
of split-phase winding machines. Defining m the number of
phases per set of windings, in multi-three phase motors m = 3
(phases a, b, and c in Fig.1). Therefore, defining N the number
of three phase systems (or unit block), the total number of
phases is equal to n = Nm. The motor modelled in this paper
is composed by twelve phases, arranged in four three-phase
sets of windings (m = 3, N = 4, n = 12). Considering the

(a) (b)

Fig. 3. The W matrix maps the split-phase winding scheme with even n
in Fig.3a, denoted with abc, into the standard equivalent scheme with phase
progression α in Fig.3b, denoted with std.

case of an asymmetrical split-phase scheme composed of N
symmetrical m-phase sections with even number of phases
n = Nm (Fig.3a), the permutation matrix

W(i,j) =

{
1 if i− trunc( j−1

m
)− 2Nmod(j − 1,m)− 1 = 0

−1 if |i− trunc( j−1
m

)− 2Nmod(j − 1,m)− 1| = mN

0 otherwise
(1)

maps the scheme in Fig.3a into the asymmetrical n-phase
scheme (or standard equivalent scheme) with sequentially-
distributed phases in Fig.3b (where trunc(x) is the largest
integer less then or equal to x, mod(x, y) is the remainder
on dividing x by y, and i, j are row and column identifiers.)
[9]. The phase progression in asymmetrical n-phase schemes
is α = π/n. In Fig.3, for graphical simplicity’s sake n = 6
(m = 3, N = 2, α = π/6) but in this work n = 12 . The stator
inductance matrix of the standard (denoted with subscript std)
winding scheme in Fig. 3b has the structure shown in the
following nxn matrix:

Lstd =



λ0 λ1 λ2 · · · −λ2 −λ1
λ1 λ0 λ1 · · · −λ3 −λ2
λ2 λ1 λ0 · · · −λ4 −λ3
...

...
...

. . .
...

...
λ2 λ3 λ4 · · · −λ0 −λ1
λ1 λ2 λ3 · · · −λ1 −λ0


= WLabcW

T

(2)
The above relates the vector φstd of the n phase flux linkages
to the vector istd of the n phase currents (φstd = Lstdistd).
The Lstd matrix values will allow to verify the results pre-
sented in Sec.III and can be easily computed from the stator
inductance matrix Labc by (1) and (2).

C. Analytical model in Park’s coordinates

Distributed current control is achieved within the rotor-
attached orthogonal dq0 reference frame thanks to the Park’s
transformation relating machine stator variables (denoted with
subscript abc) to the dq0 ones (denoted with subscript dq).
In distributed current control, there is one controller per three
phase set and only the local three currents are provided as
feedback. Since the machine is made by multiple three phase
systems, the global nxn Park’s transformation matrix is given
by Eq. 3, where 03 is a 3x3 null matrix, and θ is the rotor
position.

T =

 T1 · · · 03

...
. . .

...
03 · · · TN


nxn

(3)

Th =

√
2

3

 cos[θ − (h− 1)α] sin[θ − (h− 1)α] 0
−sin[θ − (h− 1)α] cos[θ − (h− 1)α] 0

0 0 1


 1 −1/2 −1/2

0
√

3/2 −
√

3/2

1/
√

2 1/
√

2 1/
√

2

with h = 1..N

(4)
The whole set of machine variables can be thus transformed
into the dq0 reference frame. The machine voltage equation
in the new coordinate system is:

vdq = Rdqidq + ωJLdqidq + Ldq
didq
dt

+ edq

with vdq = [vdq1 · · ·vdqN ]
T , idq = [idq1 · · · idqN ]

T

and edq = [edq1 · · · edqN ]
T

where vdqh = [vdh vqh v0h]
T

= Th [vah vbh vch]
T

idqh = [idh iqh i0h]
T

= Th [iah ibh ich]
T

edqh = [edh eqh e0h]
T

= Th [eah ebh ech]
T

= ωdφdqh/dt
(5)

where vdq , idq and edq are respectively voltage, current and
back electromotive force vectors nx1. Rdq and Ldq are respec-
tively resistance and inductance matrices nxn, ω = dθ/dt, and

J =

 J1 · · · 03

...
. . .

...
03 · · · JN

 ; Jh = Th
dTT

h

dθ
=

 0 −1 0
1 0 0
0 0 0


(6)

More precisely, Rabc = Rdq = rsI(nxn) where rs is the stator
phase resistance, whereas

Ldq =

 Ldq(1,1) · · · Ldq(1,N)

...
. . .

...
Ldq(N,1) · · · Ldq(N,N)


with Ldq(i,j) = LTdq(j,i) = ThLabc(i,j)T

T
h =

=
3

2

(
Lmd 0 0
0 Lmq 0
0 0 0

)
+

(
Mi−j −Xi−j 0
Xi−j Mi−j 0
0 0 Hi−j

) (7)



where Lmd and Lmq are d, q magnetizing inductances.
Parameters Mk, Xk, Hk are the stator leakage inductances
expressed in the rotor dq0 reference frame. Their physical
meaning is schematically shown in Fig. 4 (where i and j
are the stator set identifiers 1..N ) and they can be calculated
with finite element analysis or analytic formulation [12],
[13]. In particular, it can be seen that the mutual leakage

Fig. 4. Self and mutual inductances of stator dq0 circuits corresponding to
the i-th and j-th stator three-phase set. M0 is the self-leakage inductance.

inductance Xi−j couples the d-axis circuit corresponding to
the i-th set with the q-axis circuit corresponding to the j-th
set of windings. It is worth to notice that d-q cross coupling
depends on leakage fluxes alone and may occur only between
d and q circuits representing different stator sets (i.e. only if
i 6= j, hence X0−0 = 0).

D. Leakage inductances

The stator leakage inductances in of the electric motor under
investigation are reported in Table I. They are expressed in
p.u. using as base value of the impedance Vn/(

√
3InN),

where Vn and In are respectively nominal voltage and nominal
current. Since X0−1 = 0, there are no d-q interactions between

TABLE I
STATOR LEAKAGE INDUCTANCES IN dq0

i-j 0-0 0-1 0-2

M [p.u.] 0.1 0.02 0.01

H[p.u.] 0.1 0.02

X[p.u.] 0 0

different sets of windings. In the next section, for simplicity’s
sake, whenever the current dynamic is the same in all the
segments, only data regarding the first unit-block will be
plotted. Actually, since in this particular case Lmd = Lmq ,
only data regarding the q axis of the first module will be
shown.

III. CURRENT CONTROL DESIGN IN NOMINAL CONDITIONS

In order to simplify the design of the distributed current con-
trollers, this Section aims at finding a transfer function linking
each element of the current vector only to the corresponding
element of the voltage vector, with no other input acting as a
disturbance. Unfortunately this is not possible by the analytical
model in dq coordinates since the inductance matrix Ldq is not
diagonal. In order to diagonalize the inductance matrix the
vector space decomposition is used, as it will be explained in
the following.

Since much faster than the rotor dynamic, the current control
loop design based on the voltage stator equation (5) has been
computed in blocked rotor condition. Therefore, the speed (ω)
is zero, and (5) becomes:

vdq = Rdqidq + Ldq
didq
dt

(8)

In state space model form, (8) becomes:

ẋdq = Adqxdq + Bdqudq

ydq = Cxdq + Dudq
(9)

where xdq is the current state vector, udq is the applied
voltage input vector, ydq is the output current vector, Adq =
−L−1

dq Rdq , Bdq = L−1
dq , C and D are respectively identity

and null matrices nxn. Since Ldq is not diagonal, it is not
possible to get the decoupled transfer functions between the
i-th input and j-th output with the following equation:

Gdq = C(sI−Adq)
−1Bdq + D = Ydq/Udq (10)

where I is identity matrix and s is the Laplace operator. Indeed
Gdq is not diagonal. In order to find the first harmonic inductor
value for designing the current controller in nominal condition,
the matrix of inductances can be diagonalized thanks to the
vector space decomposition (VSD) technique. The transforma-
tion matrix Tvsd maps the orthonormal coordinates dq0 into
the so called vsd orthonormal space. Therefore

Lvsd = TT
vsdLdqTvsd (11)

whereas Rvsd = Rdq , since Rdq is diagonal. The new input,
output and state space vectors in (12), respectively uvsd, yvsd
and xvsd, are the odd harmonic values of applied voltages,
output currents and state space values up to the 2ν + 1-th
harmonic (with ν = trunc((n− 1)/2)), on both d and q axes.

uvsd = [ud1 uq1 ud3 uq3 · · · ud(2ν+1) uq(2ν+1)]
T

yvsd = [yd1 yq1 yd3 yq3 · · · yd(2ν+1) yq(2ν+1)]
T

xvsd = [xd1 xq1 xd3 xq3 · · · xd(2ν+1) xq(2ν+1)]
T

(12)

Therefore, defining the new state space matrices Avsd =
−L−1

vsdRvsd and Bvsd = L−1
vsd, the decoupled transfer func-

tions have been computed in the vsd space thanks to the
following equation:

Gvsd = C(sI−Avsd)
−1Bvsd + D = Yvsd/Uvsd (13)

The matrix Gvsd is diagonal and it describes the odd harmonic
values of the currents up to the 2ν + 1-th harmonic, on both



d and q axes. From this point, nominal, open and short circuit
condition will be denoted respectively with subscript NC , OC
and SC .

The Gvsd and Gdq transfer function nxn matrices link
input and output of two equivalent orthonormal spaces. Since
the vsd space is related to the equivalent poly-phase winding
arrangement in Fig.3b, characterized by a symmetrical circu-
lant structure inductance matrix like the one in (2), the Gvsd

matrix is diagonal. In Fig.5 it is shown the equivalence of the
following transfer functions: GAdqNC =

∑n
k=1GdqNC(k,2)

and GvsdNC(2,2). GAdqNC (in red asterisks) relates all the
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Fig. 5. Bode diagram comparing the transfer functions in both vsd and dq
state space models.

dq0 inputs with the q output current of the first set of
windings xdq(2,1) in (9). GvsdNC(2,2) (in blue circles) relates
the first harmonic q input voltage with the first harmonic
q output current, xq1 in (12). In order to highlight that
the mutual leakage inductance X0−1 in Fig. 4 is zero, in
green triangles it is shown the transfer function GBdqNC =∑N
k=1GdqNC(3k−1,2) describing just the q output current

of the first set of windings taking into account only the q
input voltages (udq(2,1),udq(5,1),udq(8,1),udq(11,1)). The match
between GAdqNC and GBdqNC confirms that there are no
interactions among different axes of different sets of windings.

The GvsdNC(2,2) transfer function pulsation in Fig.5 is

ωNC = rs/d1NC (14)

where d1NC is the first harmonic inductance in nominal
condition. Since rs can be easily measured and ωNC can
be extrapolated from Fig.5, d1NC computation is trivial.
However, in order to plot Fig.5, Gdq in (10) or Tvsd in (11)
and Gvsd in (13) must be numerically computed. Exactly the
same d1NC value and Lvsd diagonal matrix could have been
obtained analytically thanks to the vector space decomposition
with the following equations [8], [9]:

dj =

n∑
k=1

λk−1cos[αj(k − 1)] (15)

(where λk are the matrix values in (2)) keeping just the odd
elements up to j equal to 2ν + 1 like in the following:

Lvsd =



d1 0 0 0 · · · 0 0
0 d1 0 0 · · · 0 0
0 0 d3 0 · · · 0 0
0 0 0 d3 · · · 0 0
...

...
...

...
. . . 0 0

0 0 0 0 0 d2ν+1 0
0 0 0 0 0 0 d2ν+1


(16)

Since the first harmonic inductance d1 describes the dominant
pole of the current dynamic on both d and q axes, once d1 is
computed in nominal condition with one of the two presented
methods, q and d current proportional integral controllers (PI)
in Fig.6 can be computed considering the plant in (17).

i∗

i
−

sKpNC+KiNC

s

ei 1
sd1NC+rs

v i

Fig. 6. Current control diagram within the synchronous reference frame
without axes decoupling with first harmonic inductor d1NC and the phase
resistor rs. KpNC and KiNC are the PI gains in nominal condition.

GvsdNC(2,2) =
1

sd1NC + rs
=

nNC∑
k=1

GdqNC(k,2) (17)

In the next section open and short circuit conditions are
detailed, and it will be shown that (15) is not valid for the
short circuit condition.

IV. CURRENT CONTROL DESIGN IN FAULTY CONDITIONS

In a real case scenario, in a system like the one in Fig. 2,
both on machine and inverter side, many different faults can
occur. In this paper, for brevity, only the two following faulty
conditions have been modelled: a) last set open (Fig. 7a), b)
last set short circuited (Fig. 7b). In this work, it is assumed

DC

AC

(a) The last set is disconnected.

DC

AC

(b) The last set is in short circuit

Fig. 7. Simulated faulty conditions.

that after a generic fault, the system is able to configure itself
in one of these two configurations.

A. Open circuit

In order to calculate the first harmonic inductance under
open circuit condition (Fig.7a), the state space model in (9)
must be re-written. If the model order in healthy condition is
equal to the phase number nNC = NNCm, the new model



order in open circuit condition is equal to nOC = nNC − 3 =
NOCm = 9, being NOC = 3 instead of four. Therefore, the
new state space model in dq0 coordinates will be built without
considering the last three rows and the last three columns of
the state space model in nominal condition:

xdqOC = xdqNC(1:nOC ,1), udqOC = udqNC(1:nOC ,1)

ydqOC = ydqNC(1:nOC ,1), LdqOC = LdqNC(1:nOC ,1:nOC)

RdqOC = RdqNC(1:nOC ,1:nOC)

CdqOC = I(nOC ,nOC) DdqOC = 0(nOC ,nOC)
(18)

Similarly to what has been done for the nominal condi-
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Fig. 8. Bode diagram comparing the dominant pole in nominal con-
dition GvsdNC(2,2) versus the open circuit condition GAdqOC =∑nOC

k=1
Gdq(k,2) = GvsdOC(2,2)

tion in the previous section, computing AdqOC ,BdqOC , (10),
(11), (13) with the new variables defined in (18), the diago-
nalised sub-state space model leads to a new transfer function
GvsdOC(2,2). In Fig.8, the bode diagrams of the dominant
transfer function in nominal (black line) and faulty conditions,
both from vsd (yellow right triangles) and dq0 (magenta
diamonds) state, have been reported. From the diagrams it is
possible to appreciate the match between the two different
coordinate systems and the difference between faulty and
healthy state. The GvsdOC(2,2) differs from (17) only for the
inductance d1OC value that can be used for the design of
the current controller under open circuit condition. Like in
nominal condition, the d1OC value can be computed by (15)
(with k ranging from 1 to nOC) or it can be extrapolated from
Fig. 8.

B. Short circuit

The model describing the system in Fig.7b, with the last
three phase set of windings in short circuit, is obtained
imposing zero voltage on the fourth three phase set (vd4 =
vq4 = v04 = 0V ). The state space model order will be
the same of the one in nominal condition (nSC = nNC)
and for this reason (15) is not valid. Short circuit currents
presence in the faulty set affects the current dynamic of
healthy sets. According to the spatial disposition of the healthy
three phase sets with respect to the faulty one (the fourth
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Fig. 9. q output currents comparison between nominal and short circuited
condition

one), current dynamics of the first and third three phase
sets are identical, but they are different from that of the
second three phase set. Transfer functions relating healthy q
input voltages (udq(2,1),udq(5,1),udq(8,1)) with healthy q output
currents (xdq(2,1),xdq(5,1),xdq(8,1)) are plotted in Fig.9. From
the diagrams it is possible to appreciate the difference between
the second (red asterisks) set versus the first (blue circles) and
the third one (magenta triangles). Since at high frequency all
the sets of windings differ from nominal condition (black line),
the proportional gains of the PI controllers must be updated in
order to match the healthy system closed loop transfer function
in Fig.6. It will be latter shown that determining the three
high frequency magnitude differences between nominal and
faulty condition transfer functions in Fig.9 (KSC1 = KSC3,
and KSC2) and updating the PIs as indicated in Table II, it is
possible to compensate the fourth set short circuit fault.

TABLE II
PI GAINS IN NOMINAL AND SHORT CIRCUIT CONDITIONS

set 1 2 3 4

KpNC KpNC KpNC KpNC KpNC

KpSC KpNC/KSC1 KpNC/KSC2 KpNC/KSC3

KiNC KiNC KiNC KiNC KiNC

KiSC KiNC/KSC1 KiNC/KSC2 KiNC/KSC3

V. SIMULATION RESULTS

The system has been simulated in all the conditions pre-
sented above: nominal, open and short circuit condition. The
q currents iq1, iq2, iq3, iq4 of the four sets of windings are
respectively the 2-nd, 5-th, 8-th and 11-th element of the state
space vector xdq in (9). The stator leakage inductances in
p.u. are reported in Table I, the magnetizing inductances and
stator phase resistor are respectively Lmq = Lmd = 1.62H
and rs = 0.0072Ω. In nominal condition, the resulting first
harmonic inductance d1NC has been computed by (15) equal
to 0.0033H and further verified thanks to (14) and Fig.5. In
all the simulations the current PI controllers have been set



(a) Current step in nominal condition (b) In OC the system with nominal PIs is stable. (c) In SC the PIs must be updated.

Fig. 10. Current step in nominal condition and stability margins in faulty conditions. del2 = e−s1.5Ts and cfil = ω2
f/(s

2 +
√
2ωf s+ ω2

f ).

up with current bandwidth ωc = 600[rad/sec] and phase
margin ϕc = 60◦. In order to highlight how stability margins
are affected by faulty conditions, second order current filter
and microprocessor actuation delay (e−s1.5Ts ) have been in-
troduced as shown by the block diagram of Fig.11. The delay
has been set as Ts = 2π/(25ωc)[sec] and the current filter cut-
off frequency as ωf = 66 · 103[rad/sec]. The PI parameters

i∗

i
−

PINC

ei
e−s1.5Ts Gx

i

ω2
f/(s

2 +
√
2ωfs+ ω2

f )

Fig. 11. Actuation delay and current filter have been introduced in order to
highlight stability margin variations while keeping constant the PI gains in
faulty conditions.

computation in nominal condition has led to KpNC = 2.12
and KiNC = 197.

A. Nominal condition

The output current in nominal condition of the control
diagram in Fig.11 has been compared with the four iq output
currents of a Simulink simulation with the four PI controllers
regulating the whole dq0 machine model. In Fig.10a, it is
possible to appreciate the match between the desired dynamic
from the control diagram in Fig.11 and the four Simulink
output currents with the same PI parameters KpNC and KiNC .

B. Stability margins in faulty conditions

In Figs.10b and 10c, stability margins of loop gain transfer
functions in open and short circuit condition are shown. It is
clear that without updating the controllers in open circuit the
system is stable, whereas in short circuit the phase margin is
very small.

C. Open circuit condition

In Fig.12a, the Simulink output currents with the last set
of windings in open circuit condition (iq4 = 0) are reported.
In this situation the new first harmonic inductance d1OC has
been computed with (15) equal to 0.0025H and further verified

with (14) thanks to Fig.8. Since the PI parameters have not
been updated, the resulting current dynamic do not match the
desired one. In order to guarantee the nominal dynamic per-
formance, the PI parameters must be re-calculated taking into
account the new first harmonic inductance d1OC = 0.0025H
(KpOC = 1.59 and KiOC = 149).

D. Short circuit condition

In Fig. 12b, system’s stability margins in SC with updated
regulators are shown. Looking at Fig.10c, the phase margin
improvement is clear. As detailed in Sec.IV-B in Table II, in
short circuit condition the PI controllers must be divided by
the KSCj factors which take into account the set displace-
ment within the stator. The calculations of the compensating
factors in this particular case lead to the following values:
KSC2 = KSC8 = 23.13 and KSC5 = 14.07. The current
dynamic under short circuit condition with updated parameters
is depicted in Fig.12c. Enhancement is highlighted comparing
iq1 with nominal regulator under SC condition (dash-dot line).

VI. CONCLUSION

This paper presents a distributed current control for multi-
three phase synchronous machines with even number of phases
under healthy and faulty conditions, e.g., one three-phase
set of windings in open circuit, one set in short circuit.
The plant for designing the current controller in healthy
condition was numerically obtained diagonalising the state
space model in the dq0 reference frame. The results were
successfully compared against the ones analytically obtained
thanks to the vector space decomposition. Furthermore, the
same analysis and comparison was conducted with one three
phase set of windings in open circuit condition. Finally,
current control design in all the three conditions, respectively
healthy, open, and short circuit were validated by mean
of Matlab/Simulink R© simulations. Stability margin analysis
highlighted system degradation under short circuit condition
with nominal current regulators. However, the on-line current
controller update did not rise any particular issue contrasting
multi-three phase machine adoption in critical applications
where higher fault tolerance is demanded.



(a) KpNC = 2.12, KiNC = 197 (b) Stability margins in SC, see Table II (c) See Table II

Fig. 12. Current step in OC (12a) with nominal regulators and in SC (12c) with updated ones. In Fig. (12b), PISCh = KpSCh +KiSCh/s.
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