459 research outputs found

    Hibridaciones interespecificas para el mejoramiento de Phaseolus vulgaris L.

    Get PDF
    A study was initiated to determine the barriers that limit the transferences of genes between Phaseolus vulgaris and P. coccineus. The factors that determine the outcome of this crossing are the direction (success is greater when P. vulgaris is used as the mother parent) and the combination of parents. Early generations show reduced viability and fertility. This reduction is more pronounced in progenies P. vulgaris x P. coccineus subspecie coccineus compared with progenies P. vulgaris x P. coccineus subspecie polyanthus. It also depends on the combination of parents. In later generations a progressive restoration of viability and fertility was observed. The combination of parents greatly affects the type of segregation of the characteristics in progeny observed in F2 of P. vulgaris x P. coccineus subspecie coccineus crossing. Moreover, results seem to indicate that in progenies P. vulgaris x P. coccineus subspecie polyanthus there are more possibilities of recombination. Interesting materials were selected for improvement of plant architecture (resistance to lodging, long hypocotyl and epicotyl, small folioles) and disease resistance (tolerance to BGMV). Some suggestions are made on future activities of the project of interspecific crosses: multiplication and evaluation of the P. coccineus collection, studies on segregation, projects on crosses fox specific objectives. (AS-CIAT

    Etapas de desarrollo en la planta de frijol

    Get PDF
    The developmental scale of the bean crop and the general characteristics of plant development are described on the basis of morphological and physiological changes in the plant. The factors influencing the duration of the developmental stages of beans are identified, namely growth habit, earliness, and climate. (CIAT)Se describen las etapas de la escala del desarrollo del cultivo de frijol y las caracteristicas generales del desarrollo de la planta con base en los cambios morfologicos y fisiologicos de la misma. Se identifican los factores que influyen en la duracion de las etapas de desarrollo del frijol: habito de crecimiento, precocidad y clima. (CIAT

    Genetically engineered organisms and the environment: Current status and recommendations

    Get PDF
    The Ecological Society of America has evaluated the ecological effects of current and potential uses of field-released genetically engineered organisms (GEOs), as described in this Position Paper. Some GEOs could play a positive role in sustainable agriculture, forestry, aquaculture, bioremediation, and environmental management, both in developed and developing countries. However, deliberate or inadvertent releases of GEOs into the environment could have negative ecological effects under certain circumstances. Possible risks of GEOs could include: (1) creating new or more vigorous pests and pathogens; (2) exacerbating the effects of existing pests through hybridization with related transgenic organisms; (3) harm to nontarget species, such as soil organisms, non-pest insects, birds, and other animals; (4) disruption of biotic communities, including agroecosystems; and (5) irreparable loss or changes in species diversity or genetic diversity within species. Many potential applications of genetic engineering extend beyond traditional breeding, encompassing viruses, bacteria, algae, fungi, grasses, trees, insects, fish, and shellfish. GEOs that present novel traits will need special scrutiny with regard to their environmental effects. The Ecological Society of America supports the following recommendations. (1) GEOs should be designed to reduce environmental risks. (2) More extensive studies of the environmental benefits and risks associated with GEOs are needed. (3) These effects should be evaluated relative to appropriate baseline scenarios. (4) Environmental release of GEOs should be prevented if scientific knowledge about possible risks is clearly inadequate. (5) In some cases, post-release monitoring will be needed to identify, manage, and mitigate environmental risks. (6) Science-based regulation should subject all transgenic organisms to a similar risk assessment framework and should incorporate a cautious approach, recognizing that many environmental effects are GEO- and site-specific. (7) Ecologists, agricultural scientists, molecular biologists, and others need broader training and wider collaboration to address these recommendations. In summary, GEOs should be evaluated and used within the context of a scientifically based regulatory policy that encourages innovation without compromising sound environmental management. The Ecological Society of America is committed to providing scientific expertise for evaluating and predicting the ecological effects of field-released transgenic organisms

    Tagging the Signatures of Domestication in Common Bean (Phaseolus vulgaris) by Means of Pooled DNA Samples

    Get PDF
    -Background and Aims: The main aim of this study was to use an amplified fragment length polymorphism (AFLP)-based, large-scale screening of the whole genome of Phaseolus vulgaris to determine the effects of selec- tion on the structure of the genetic diversity in wild and domesticated populations. -Methods: Using pooled DNA samples, seven each of wild and domesticated populations of P. vulgaris were studied using 2506 AFLP markers (on average, one every 250 kb). About 10% of the markers were also analysed on indi- -Key Results: The most important outcome is that a large fraction of the genome of the common bean (16 %; P, 0.01) appears to have been subjected to effects of selection during domestication. Markers obtained in indivi- vidual genotypes and were used to infer allelic frequencies empirically from bulk data. In both data sets, tests were made to determine the departure from neutral expectation for each marker using an FST-based method. dual genotypes were also mapped and classified according to their proximities to known genes and quantitative trait loci (QTLs) of the domestication syndrome. Most of the markers that were found to be potentially under the effects of selection were located in the proximity of previously mapped genes and QTLs related to the domestication syndrome. - Conclusions: Overall, the results indicate that in P. vulgaris a large portion of the genome appears to have been subjected to the effects of selection, probably because of linkage to the loci selected during domestication. As most of the markers that are under the effects of selection are linked to known loci related to the domestication syndrome, it is concluded that population genomics approaches are very efficient in detecting QTLs. A method based on bulk DNA samples is presented that is effective in pre-screening for a large number of markers to determine selection signatures

    Evaluation of diversity among common beans (Phaseolus vulgaris L.) from two centers of domestication using 'omics' technologies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic diversity among wild accessions and cultivars of common bean (<it>Phaseolus vulgaris </it>L.) has been characterized using plant morphology, seed protein allozymes, random amplified polymorphic DNA, restriction fragment length polymorphisms, DNA sequence analysis, chloroplast DNA, and microsatellite markers. Yet, little is known about whether these traits, which distinguish among genetically distinct types of common bean, can be evaluated using omics technologies.</p> <p>Results</p> <p>Three 'omics' approaches: transcriptomics, proteomics, and metabolomics were used to qualitatively evaluate the diversity of common bean from two Centers of Domestication (COD). All three approaches were able to classify common bean according to their COD using unsupervised analyses; these findings are consistent with the hypothesis that differences exist in gene transcription, protein expression, and synthesis and metabolism of small molecules among common bean cultivars representative of different COD. Metabolomic analyses of multiple cultivars within two common bean gene pools revealed cultivar differences in small molecules that were of sufficient magnitude to allow identification of unique cultivar fingerprints.</p> <p>Conclusions</p> <p>Given the high-throughput and low cost of each of these 'omics' platforms, significant opportunities exist for their use in the rapid identification of traits of agronomic and nutritional importance as well as to characterize genetic diversity.</p

    Genetic diversity analysis of common beans based on molecular markers

    Get PDF
    A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation

    Microsatellite diversity and genetic structure among common bean (Phaseolus vulgaris L.) landraces in Brazil, a secondary center of diversity

    Get PDF
    Brazil is the largest producer and consumer of common bean (Phaseolus vulgaris L.), which is the most important source of human dietary protein in that country. This study assessed the genetic diversity and the structure of a sample of 279 geo-referenced common bean landraces from Brazil, using molecular markers. Sixty-seven microsatellite markers spread over the 11 linkage groups of the common bean genome, as well as Phaseolin, PvTFL1y, APA and four SCAR markers were used. As expected, the sample showed lower genetic diversity compared to the diversity in the primary center of diversification. Andean and Mesoamerican gene pools were both present but the latter gene pool was four times more frequent than the former. The two gene pools could be clearly distinguished; limited admixture was observed between these groups. The Mesoamerican group consisted of two sub-populations, with a high level of admixture between them leading to a large proportion of stabilized hybrids not observed in the centers of domestication. Thus, Brazil can be considered a secondary center of diversification of common bean. A high degree of genome-wide multilocus associations even among unlinked loci was observed, confirming the high level of structure in the sample and suggesting that association mapping should be conducted in separate Andean and Mesoamerican Brazilian samples
    • 

    corecore