1,151 research outputs found

    The Effects of Competition on Variation in the Quality and Cost of Medical Care

    Get PDF
    We estimate the effects of hospital competition on the level of and the variation in quality of care and hospital expenditures for elderly Medicare beneficiaries with heart attack. We compare competition's effects on more-severely ill patients, whom we assume value quality more highly, to the effects on less-severely ill, low-valuation patients. We find that low-valuation patients in less-competitive markets receive more intensive treatment than in more-competitive markets, but have statistically similar health outcomes. In contrast, high-valuation patients in less-competitive markets receive less intensive treatment than in more-competitive markets, and have significantly worse health outcomes. Since this competition-induced increase in variation in expenditures is, on net, expenditure-decreasing and outcome-beneficial, we conclude that it is welfare-enhancing. These findings are inconsistent with conventional models of vertical differentiation, although they can be accommodated by more recent models.

    Hall drift of axisymmetric magnetic fields in solid neutron-star matter

    Full text link
    Hall drift, i. e., transport of magnetic flux by the moving electrons giving rise to the electrical current, may be the dominant effect causing the evolution of the magnetic field in the solid crust of neutron stars. It is a nonlinear process that, despite a number of efforts, is still not fully understood. We use the Hall induction equation in axial symmetry to obtain some general properties of nonevolving fields, as well as analyzing the evolution of purely toroidal fields, their poloidal perturbations, and current-free, purely poloidal fields. We also analyze energy conservation in Hall instabilities and write down a variational principle for Hall equilibria. We show that the evolution of any toroidal magnetic field can be described by Burgers' equation, as previously found in plane-parallel geometry. It leads to sharp current sheets that dissipate on the Hall time scale, yielding a stationary field configuration that depends on a single, suitably defined coordinate. This field, however, is unstable to poloidal perturbations, which grow as their field lines are stretched by the background electron flow, as in instabilities earlier found numerically. On the other hand, current-free poloidal configurations are stable and could represent a long-lived crustal field supported by currents in the fluid stellar core.Comment: 8 pages, 5 figure panels; new version with very small correction; accepted by Astronomy & Astrophysic

    Evidence for Heating of Neutron Stars by Magnetic Field Decay

    Get PDF
    We show the existence of a strong trend between neutron star surface temperature and the dipolar component of the magnetic field extending through three orders of field magnitude, a range that includes magnetars, radio-quiet isolated neutron stars, and many ordinary radio pulsars. We suggest that this trend can be explained by the decay of currents in the crust over a time scale of few Myr. We estimate the minimum temperature that a NS with a given magnetic field can reach in this interpretation.Comment: 4 pages, 1 figures, version accepted for publication in Phys. Rev. Let

    Turning Points in the Evolution of Isolated Neutron Stars' Magnetic Fields

    Get PDF
    During the life of isolated neutron stars (NSs) their magnetic field passes through a variety of evolutionary phases. Depending on its strength and structure and on the physical state of the NS (e.g. cooling, rotation), the field looks qualitatively and quantitatively different after each of these phases. Three of them, the phase of MHD instabilities immediately after NS's birth, the phase of fallback which may take place hours to months after NS's birth, and the phase when strong temperature gradients may drive thermoelectric instabilities, are concentrated in a period lasting from the end of the proto--NS phase until 100, perhaps 1000 years, when the NS has become almost isothermal. The further evolution of the magnetic field proceeds in general inconspicuous since the star is in isolation. However, as soon as the product of Larmor frequency and electron relaxation time, the so-called magnetization parameter, locally and/or temporally considerably exceeds unity, phases, also unstable ones, of dramatic changes of the field structure and magnitude can appear. An overview is given about that field evolution phases, the outcome of which makes a qualitative decision regarding the further evolution of the magnetic field and its host NS.Comment: References updated, typos correcte

    Thermal conductivity of ions in a neutron star envelope

    Full text link
    We analyze the thermal conductivity of ions (equivalent to the conductivity of phonons in crystalline matter) in a neutron star envelope. We calculate the ion/phonon thermal conductivity in a crystal of atomic nuclei using variational formalism and performing momentum-space integration by Monte Carlo method. We take into account phonon-phonon and phonon-electron scattering mechanisms and show that phonon-electron scattering dominates at not too low densities. We extract the ion thermal conductivity in ion liquid or gas from literature. Numerical values of the ion/phonon conductivity are approximated by analytical expressions, valid for T>10^5 K and 10^5 g cm^-3 < \rho < 10^14 g cm^-3. Typical magnetic fields B~10^12 G in neutron star envelopes do not affect this conductivity although they strongly reduce the electron thermal conductivity across the magnetic field. The ion thermal conductivity remains much smaller than the electron conductivity along the magnetic field. However, in the outer neutron star envelope it can be larger than the electron conductivity across the field, that is important for heat transport across magnetic field lines in cooling neutron stars. The ion conductivity can greatly reduce the anisotropy of heat conduction in outer envelopes of magnetized neutron stars.Comment: 12 pages, 5 figures; to appear in MNRA

    Flux Expulsion - Field Evolution in Neutron Stars

    Get PDF
    Models for the evolution of magnetic fields of neutron stars are constructed, assuming the field is embedded in the proton superconducting core of the star. The rate of expulsion of the magnetic flux out of the core, or equivalently the velocity of outward motion of flux-carrying proton-vortices is determined from a solution of the Magnus equation of motion for these vortices. A force due to the pinning interaction between the proton-vortices and the neutron-superfluid vortices is also taken into account in addition to the other more conventional forces acting on the proton-vortices. Alternative models for the field evolution are considered based on the different possibilities discussed for the effective values of the various forces. The coupled spin and magnetic evolution of single pulsars as well as those processed in low-mass binary systems are computed, for each of the models. The predicted lifetimes of active pulsars, field strengths of the very old neutron stars, and distribution of the magnetic fields versus orbital periods in low-mass binary pulsars are used to test the adopted field decay models. Contrary to the earlier claims, the buoyancy is argued to be the dominant driving cause of the flux expulsion, for the single as well as the binary neutron stars. However, the pinning is also found to play a crucial role which is necessary to account for the observed low field binary and millisecond pulsars.Comment: 23 pages, + 7 figures, accepted for publication in Ap

    Magnetars as cooling neutron stars with internal heating

    Get PDF
    We study thermal structure and evolution of magnetars as cooling neutron stars with a phenomenological heat source in a spherical internal layer. We explore the location of this layer as well as the heating rate that could explain high observable thermal luminosities of magnetars and would be consistent with the energy budget of neutron stars. We conclude that the heat source should be located in an outer magnetar's crust, at densities rho < 5e11 g/cm^3, and should have the heat intensity of the order of 1e20 erg/s/cm^3. Otherwise the heat energy is mainly emitted by neutrinos and cannot warm up the surface.Comment: 8 pages, 5 figures, submitted to MNRA
    • 

    corecore