345 research outputs found

    Temporal power spectra of the horizontal velocity of the solar photosphere

    Full text link
    We have derived the temporal power spectra of the horizontal velocity of the solar photosphere. The data sets for 14 quiet regions observed with the Gband filter of Hinode/SOT are analyzed to measure the temporal fluctuation of the horizontal velocity by using the local correlation tracking (LCT) method. Among the high resolution (~0.2") and seeing-free data sets of Hinode/SOT, we selected the observations whose duration is longer than 70 minutes and cadence is about 30 s. The so-called k-{\omega} diagrams of the photospheric horizontal velocity are derived for the first time to investigate the temporal evolution of convection. The power spectra derived from k-omega diagrams typically have a double power law shape bent over at a frequency of 4.7 mHz. The power law index in the high frequency range is -2.4 while the power law index in the low frequency range is -0.6. The root mean square of the horizontal speed is about 1.1 km/s when we use a tracer size of 0.4" in LCT method. Autocorrelation functions of intensity fluctuation, horizontal velocity, and its spatial derivatives are also derived in order to measure the correlation time of the stochastic photospheric motion. Since one of possible energy sources of the coronal heating is the photospheric convection, the power spectra derived in the present study will be of high value to quantitatively justify various coronal heating models.Comment: 17 pages, 5 figures, accepted for publication in Astrophysical Journa

    Simulations of Oscillation Modes of the Solar Convection Zone

    Get PDF
    We use the three-dimensional hydrodynamic code of Stein and Nordlund to realistically simulate the upper layers of the solar convection zone in order to study physical characteristics of solar oscillations. Our first result is that the properties of oscillation modes in the simulation closely match the observed properties. Recent observations from SOHO/MDI and GONG have confirmed the asymmetry of solar oscillation line profiles, initially discovered by Duvall et al. In this paper we compare the line profiles in the power spectra of the Doppler velocity and continuum intensity oscillations from the SOHO/MDI observations with the simulation. We also compare the phase differences between the velocity and intensity data. We have found that the simulated line profiles are asymmetric and have the same asymmetry reversal between velocity and intensity as observed. The phase difference between the velocity and intensity signals is negative at low frequencies and jumps in the vicinity of modes as is also observed. Thus, our numerical model reproduces the basic observed properties of solar oscillations, and allows us to study the physical properties which are not observed.Comment: Accepted for publication in ApJ Letter

    Numerical MHD Simulations of Solar Magnetoconvection and Oscillations in Inclined Magnetic Field Regions

    Full text link
    The sunspot penumbra is a transition zone between the strong vertical magnetic field area (sunspot umbra) and the quiet Sun. The penumbra has a fine filamentary structure that is characterized by magnetic field lines inclined toward the surface. Numerical simulations of solar convection in inclined magnetic field regions have provided an explanation of the filamentary structure and the Evershed outflow in the penumbra. In this paper, we use radiative MHD simulations to investigate the influence of the magnetic field inclination on the power spectrum of vertical velocity oscillations. The results reveal a strong shift of the resonance mode peaks to higher frequencies in the case of a highly inclined magnetic field. The frequency shift for the inclined field is significantly greater than that in vertical field regions of similar strength. This is consistent with the behavior of fast MHD waves.Comment: 9 pages, 6 figures, Solar Physics (in press

    What Causes P-mode Asymmetry Reversal?

    Full text link
    The solar acoustic p-mode line profiles are asymmetric. Velocity spectra have more power on the low-frequency sides, whereas intensity profiles show the opposite sense of asymmetry. Numerical simulations of the upper convection zone have resonant p-modes with the same asymmetries and asymmetry reversal as the observed modes. The temperature and velocity power spectra at optical depth Ď„cont=1\tau_{\rm cont} = 1 have the opposite asymmetry as is observed for the intensity and velocity spectra. At a fixed geometrical depth, corresponding to =1=1, however, the temperature and velocity spectra have the same asymmetry. This indicates that the asymmetry reversal is produced by radiative transfer effects and not by correlated noise.Comment: 16 pages, 10 figures, submitted to Astrophysical Journa

    Comparison of High-degree Solar Acoustic Frequencies and Asymmetry between Velocity and Intensity Data

    Get PDF
    Using the local helioseismic technique of ring diagram we analyze the frequencies of high--degree f- and p-modes derived from both velocity and continuum intensity data observed by MDI. Fitting the spectra with asymmetric peak profiles, we find that the asymmetry associated with velocity line profiles is negative for all frequency ranges agreeing with previous observations while the asymmetry of the intensity profiles shows a complex and frequency dependent behavior. We also observe systematic frequency differences between intensity and velocity spectra at the high end of the frequency range, mostly above 4 mHz. We infer that this difference arises from the fitting of the intensity rather than the velocity spectra. We also show that the frequency differences between intensity and velocity do not vary significantly from the disk center to the limb when the spectra are fitted with the asymmetric profile and conclude that only a part of the background is correlated with the intensity oscillations.Comment: Accepted for publication in Astrophysical Journa

    Imaging the Solar Tachocline by Time-Distance Helioseismology

    Full text link
    The solar tachocline at the bottom of the convection zone is an important region for the dynamics of the Sun and the solar dynamo. In this region, the sound speed inferred by global helioseismology exhibits a bump of approximately 0.4% relative to the standard solar model. Global helioseismology does not provide any information on possible latitudinal variations or asymmetries between the Northern and Southern hemisphere. Here, we develop a time-distance helioseismology technique, including surface- and deep-focusing measurement schemes and a combination of both, for two-dimensional tomographic imaging of the solar tachocline that infers radial and latitudinal variations in the sound speed. We test the technique using artificial solar oscillation data obtained from numerical simulations. The technique successfully recovers major features of the simplified tachocline models. The technique is then applied to SOHO/MDI medium-l data and provides for the first time a full two-dimensional sound-speed perturbation image of the solar tachocline. The one-dimensional radial profile obtained by latitudinal averaging of the image is in good agreement with the previous global helioseismology result. It is found that the amplitude of the sound-speed perturbation at the tachocline varies with latitude, but it is not clear whether this is in part or fully an effect of instrumental distortion. Our initial results demonstrate that time-distance helioseismology can be used to probe the deep interior structure of the Sun, including the solar tachocline.Comment: accepted for publication by Ap
    • …
    corecore