We use the three-dimensional hydrodynamic code of Stein and Nordlund to
realistically simulate the upper layers of the solar convection zone in order
to study physical characteristics of solar oscillations. Our first result is
that the properties of oscillation modes in the simulation closely match the
observed properties. Recent observations from SOHO/MDI and GONG have confirmed
the asymmetry of solar oscillation line profiles, initially discovered by
Duvall et al. In this paper we compare the line profiles in the power spectra
of the Doppler velocity and continuum intensity oscillations from the SOHO/MDI
observations with the simulation. We also compare the phase differences between
the velocity and intensity data. We have found that the simulated line profiles
are asymmetric and have the same asymmetry reversal between velocity and
intensity as observed. The phase difference between the velocity and intensity
signals is negative at low frequencies and jumps in the vicinity of modes as is
also observed. Thus, our numerical model reproduces the basic observed
properties of solar oscillations, and allows us to study the physical
properties which are not observed.Comment: Accepted for publication in ApJ Letter