1,048 research outputs found

    An Examination of Parameters Affecting Large Eddy Simulations of Flow Past a Square Cylinder

    Get PDF
    Separated flow over a bluff body is analyzed via large eddy simulations. The turbulent flow around a square cylinder features a variety of complex flow phenomena such as highly unsteady vortical structures, reverse flow in the near wall region, and wake turbulence. The formation of spanwise vortices is often times artificially suppressed in computations by either insufficient depth or a coarse spanwise resolution. As the resolution is refined and the domain extended, the artificial turbulent energy exchange between spanwise and streamwise turbulence is eliminated within the wake region. A parametric study is performed highlighting the effects of spanwise vortices where the spanwise computational domain's resolution and depth are varied. For Re=22,000, the mean and turbulent statistics computed from the numerical large eddy simulations (NLES) are in good agreement with experimental data. Von-Karman shedding is observed in the wake of the cylinder. Mesh independence is illustrated by comparing a mesh resolution of 2 million to 16 million. Sensitivities to time stepping were minimized and sampling frequency sensitivities were nonpresent. While increasing the spanwise depth and resolution can be costly, this practice was found to be necessary to eliminating the artificial turbulent energy exchange

    Comparison of High-Order and Low-Order Methods for Large-Eddy Simulation of a Compressible Shear Layer

    Get PDF
    The objective of this work is to compare a high-order solver with a low-order solver for performing large-eddy simulations (LES) of a compressible mixing layer. The high-order method is the Wave-Resolving LES (WRLES) solver employing a Dispersion Relation Preserving (DRP) scheme. The low-order solver is the Wind-US code, which employs the second-order Roe Physical scheme. Both solvers are used to perform LES of the turbulent mixing between two supersonic streams at a convective Mach number of 0.46. The high-order and low-order methods are evaluated at two different levels of grid resolution. For a fine grid resolution, the low-order method produces a very similar solution to the high-order method. At this fine resolution the effects of numerical scheme, subgrid scale modeling, and filtering were found to be negligible. Both methods predict turbulent stresses that are in reasonable agreement with experimental data. However, when the grid resolution is coarsened, the difference between the two solvers becomes apparent. The low-order method deviates from experimental results when the resolution is no longer adequate. The high-order DRP solution shows minimal grid dependence. The effects of subgrid scale modeling and spatial filtering were found to be negligible at both resolutions. For the high-order solver on the fine mesh, a parametric study of the spanwise width was conducted to determine its effect on solution accuracy. An insufficient spanwise width was found to impose an artificial spanwise mode and limit the resolved spanwise modes. We estimate that the spanwise depth needs to be 2.5 times larger than the largest coherent structures to capture the largest spanwise mode and accurately predict turbulent mixing

    Comparison of High-Order and Low-Order Methods for Large-Eddy Simulation of a Compressible Shear Layer

    Get PDF
    The objective of this work is to compare a high-order solver with a low-order solver for performing Large-Eddy Simulations (LES) of a compressible mixing layer. The high-order method is the Wave-Resolving LES (WRLES) solver employing a Dispersion Relation Preserving (DRP) scheme. The low-order solver is the Wind-US code, which employs the second-order Roe Physical scheme. Both solvers are used to perform LES of the turbulent mixing between two supersonic streams at a convective Mach number of 0.46. The high-order and low-order methods are evaluated at two different levels of grid resolution. For a fine grid resolution, the low-order method produces a very similar solution to the highorder method. At this fine resolution the effects of numerical scheme, subgrid scale modeling, and filtering were found to be negligible. Both methods predict turbulent stresses that are in reasonable agreement with experimental data. However, when the grid resolution is coarsened, the difference between the two solvers becomes apparent. The low-order method deviates from experimental results when the resolution is no longer adequate. The high-order DRP solution shows minimal grid dependence. The effects of subgrid scale modeling and spatial filtering were found to be negligible at both resolutions. For the high-order solver on the fine mesh, a parametric study of the spanwise width was conducted to determine its effect on solution accuracy. An insufficient spanwise width was found to impose an artificial spanwise mode and limit the resolved spanwise modes. We estimate that the spanwise depth needs to be 2.5 times larger than the largest coherent structures to capture the largest spanwise mode and accurately predict turbulent mixing

    Linear Growth through 12 Years is Weakly but Consistently Associated with Language and Math Achievement Scores at Age 12 Years in 4 Low- or Middle-Income Countries.

    Get PDF
    BackgroundWhether linear growth through age 12 y is associated with language and math achievement at age 12 y remains unclear.ObjectiveOur objective was to investigate associations of linear growth through age 12 y with reading skill, receptive vocabulary, and mathematics performance at age 12 y in 4 low- or middle-income countries (LMICs).MethodsWe analyzed data from the Young Lives Younger Cohort study in Ethiopia (n = 1275), India (n = 1350), Peru (n = 1402), and Vietnam (n = 1594). Age 1, 5, 8, and 12 y height-for-age z scores (HAZ) were calculated. Language and math achievement at age 12 y was assessed with the use of country-specific adaptations of the Peabody Picture Vocabulary Test, the Early Grades Reading Assessment, and a mathematics test; all test scores were standardized by age within country. We used path analysis to examine associations of HAZ with achievement scores. Twelve models were examined at each age (3 tests across 4 countries).ResultsMean HAZ in each country was <-1.00 at all ages. Overall, linear growth through age 12 y was associated with 0.4-3.4% of the variance in achievement scores. HAZ at 1 y was positively and significantly associated with the test score in 11 of the 12 models. This association was significantly mediated through HAZ at 5, 8, and 12 y in 9 of the models. HAZ at 5, 8, and 12 y was positively and significantly associated with test scores in 8, 8, and 6 models, respectively. These associations were mediated through HAZ at older ages in 6 of the HAZ at 5-y models and in 6 of the HAZ at 8-y models.ConclusionChild relative linear growth between ages 1 and 12 y was weakly but consistently associated with language and math achievement at age 12 y in 4 LMICs

    A comparative study of computational solutions to flow over a backward-facing step

    Get PDF
    A comparative study was conducted for computational fluid dynamic solutions to flow over a backward-facing step. This flow is a benchmark problem, with a simple geometry, but involves complicated flow physics such as free shear layers, reattaching flow, recirculation, and high turbulence intensities. Three Reynolds-averaged Navier-Stokes flow solvers with k-epsilon turbulence models were used, each using a different solution algorithm: finite difference, finite element, and hybrid finite element - finite difference. Comparisons were made with existing experimental data. Results showed that velocity profiles and reattachment lengths were predicted reasonably well by all three methods, while the skin friction coefficients were more difficult to predict accurately. It was noted that, in general, selecting an appropriate solver for each problem to be considered is important

    Modeling of Turbulent Free Shear Flows

    Get PDF
    The modeling of turbulent free shear flows is crucial to the simulation of many aerospace applications, yet often receives less attention than the modeling of wall boundary layers. Thus, while turbulence model development in general has proceeded very slowly in the past twenty years, progress for free shear flows has been even more so. This paper highlights some of the fundamental issues in modeling free shear flows for propulsion applications, presents a review of past modeling efforts, and identifies areas where further research is needed. Among the topics discussed are differences between planar and axisymmetric flows, development versus self-similar regions, the effect of compressibility and the evolution of compressibility corrections, the effect of temperature on jets, and the significance of turbulent Prandtl and Schmidt numbers for reacting shear flows. Large eddy simulation greatly reduces the amount of empiricism in the physical modeling, but is sensitive to a number of numerical issues. This paper includes an overview of the importance of numerical scheme, mesh resolution, boundary treatment, sub-grid modeling, and filtering in conducting a successful simulation

    Turbulence Model Effects on RANS Simulations of the HIFiRE Flight 2 Ground Test Configurations

    Get PDF
    The Wind-US Reynolds-averaged Navier-Stokes solver was applied to the Hypersonic International Flight Research Experimentation (HIFiRE) Flight 2 scramjet ground test configuration. Two test points corresponding to flight Mach numbers of 5.9 and 8.9 were examined. The emphasis was examining turbulence model effects on the prediction of flow path pressures. Three variants of the Menter k-omega turbulence model family were investigated. These include the baseline (BSL) and shear stress transport (SST) as well as a modified SST model where the shear stress limiter was altered. Variations in the turbulent Schmidt number were also considered. Choice of turbulence model had a substantial effect on prediction of the flow path pressures. The BSL model produced the highest pressures and the SST model produced the lowest pressures. As expected, the settings for the turbulent Schmidt number also had significant effects on predicted pressures. Small values for the turbulent Schmidt number enabled more rapid mass transfer, faster combustion, and in turn higher flowpath pressures. Optimal settings for turbulence model and turbulent Schmidt number were found to be rather case dependent, as has been concluded in other scramjet investigations

    Frozen Chemistry Effects on Nozzle Performance Simulations

    Get PDF
    Simulations of exhaust nozzle flows are typically conducted assuming the gas is calorically perfect, and typically modeled as air. However the gas inside a real nozzle is generally composed of combustion products whose thermodynamic properties may differ. In this study, the effect of gas model assumption on exhaust nozzle simulations is examined. The three methods considered model the nozzle exhaust gas as calorically perfect air, a calorically perfect exhaust gas mixture, and a frozen exhaust gas mixture. In the latter case the individual non-reacting species are tracked and modeled as a gas which is only thermally perfect. Performance parameters such as mass flow rate, gross thrust, and thrust coefficient are compared as are mean flow and turbulence profiles in the jet plume region. Nozzles which operate at low temperatures or have low subsonic exit Mach numbers experience relatively minor temperature variations inside the nozzle, and may be modeled as a calorically perfect gas. In those which operate at the opposite extreme conditions, variations in the thermodynamic properties can lead to different expansion behavior within the nozzle. Modeling these cases as a perfect exhaust gas flow rather than air captures much of the flow features of the frozen chemistry simulations. Use of the exhaust gas reduces the nozzle mass flow rate, but has little effect on the gross thrust. When reporting nozzle thrust coefficient results, however, it is important to use the appropriate gas model assumptions to compute the ideal exit velocity. Otherwise the values obtained may be an overly optimistic estimate of nozzle performance

    Medical Students' Perceptions of Play and Learning:Qualitative Study With Focus Groups and Thematic Analysis

    Get PDF
    BACKGROUND: In times where distance learning is becoming the norm, game-based learning (GBL) is increasingly applied to health profession education. Yet, decisions for if, when, how, and for whom GBL should be designed cannot be made on a solid empirical basis. Though the act of play seems to be intertwined with GBL, it is generally ignored in the current scientific literature. OBJECTIVE: The objective of our study was to explore students’ perceptions of play in leisure time and of GBL as part of a mechanistic, bottom-up approach towards evidence-informed design and implementation of GBL in health profession education. METHODS: We conducted 6 focus group discussions with medical and dentistry students, which were analyzed using thematic analysis. RESULTS: A total of 58 students participated. We identified 4 major themes based on the students’ perception of play in leisure time and on the combination of play and learning. Our results indicate that, while play preferences were highly various in our health profession student cohort, pleasure was the common ground reported for playing. Crucially, play and the serious act of learning seemed paradoxical, indicating that the value and meaning of play are strongly context-dependent for students. CONCLUSIONS: Four key points can be constructed from our study. First, students play for pleasure. Perceptions of pleasure vary considerably among students. Second, students consider play as inefficient. Inefficiency will only be justified when it increases learning. Third, play should be balanced with the serious and only be used for difficult or tedious courses. Fourth, GBL activities should not be made compulsory for students. We provide practical implications and directions for future research

    A Comparison of Three Navier-Stokes Solvers for Exhaust Nozzle Flowfields

    Get PDF
    A comparison of the NPARC, PAB, and WIND (previously known as NASTD) Navier-Stokes solvers is made for two flow cases with turbulent mixing as the dominant flow characteristic, a two-dimensional ejector nozzle and a Mach 1.5 elliptic jet. The objective of the work is to determine if comparable predictions of nozzle flows can be obtained from different Navier-Stokes codes employed in a multiple site research program. A single computational grid was constructed for each of the two flows and used for all of the Navier-Stokes solvers. In addition, similar k-e based turbulence models were employed in each code, and boundary conditions were specified as similarly as possible across the codes. Comparisons of mass flow rates, velocity profiles, and turbulence model quantities are made between the computations and experimental data. The computational cost of obtaining converged solutions with each of the codes is also documented. Results indicate that all of the codes provided similar predictions for the two nozzle flows. Agreement of the Navier-Stokes calculations with experimental data was good for the ejector nozzle. However, for the Mach 1.5 elliptic jet, the calculations were unable to accurately capture the development of the three dimensional elliptic mixing layer
    • …
    corecore