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The objective of this work is to compare a high-order solver with a low-order solver for 

performing large-eddy simulations (LES) of a compressible mixing layer. The high-order method 

is the Wave-Resolving LES (WRLES) solver employing a Dispersion Relation Preserving (DRP) 

scheme. The low-order solver is the Wind-US code, which employs the second-order Roe Physical 

scheme. Both solvers are used to perform LES of the turbulent mixing between two supersonic 

streams at a convective Mach number of 0.46. The high-order and low-order methods are 

evaluated at two different levels of grid resolution. For a fine grid resolution, the low-order 

method produces a very similar solution to the high-order method. At this fine resolution the 

effects of numerical scheme, subgrid scale modeling, and filtering were found to be negligible. 

Both methods predict turbulent stresses that are in reasonable agreement with experimental data. 

However, when the grid resolution is coarsened, the difference between the two solvers becomes 

apparent. The low-order method deviates from experimental results when the resolution is no 

longer adequate. The high-order DRP solution shows minimal grid dependence. The effects of 

subgrid scale modeling and spatial filtering were found to be negligible at both resolutions. For the 

high-order solver on the fine mesh, a parametric study of the spanwise width was conducted to 

determine its effect on solution accuracy. An insufficient spanwise width was found to impose an 

artificial spanwise mode and limit the resolved spanwise modes. We estimate that the spanwise 

depth needs to be 2.5 times larger than the largest coherent structures to capture the largest 

spanwise mode and accurately predict turbulent mixing. 

Nomenclature 

𝑎 = speed of sound 𝑈∗ = dimensionless mean velocity 

𝑏 = mixing layer thickness 𝑢̃𝑖  = Favre filtered velocity 

𝐸 = total energy per unit mass 𝑈 = mean streamwise velocity 

𝑓 = frequency 𝑢′𝑢′̅̅ ̅̅ ̅ = Reynolds normal stress 

𝐻 = tunnel height  𝑢′𝑣′̅̅ ̅̅ ̅ = Reynolds shear stress 

𝑘 = turbulent kinetic energy 𝑢𝑟𝑚𝑠 = √𝑢′𝑢′̅̅ ̅̅ ̅̅  = rms streamwise velocity 

𝐿 = domain length 𝑣𝑟𝑚𝑠 = √𝑣′𝑣′̅̅ ̅̅ ̅̅  = rms transverse velocity 

𝑀𝑐 = convective Mach number 𝑤𝑟𝑚𝑠 = √𝑤′𝑤′̅̅ ̅̅ ̅̅ ̅ = rms spanwise velocity 

𝑁 = number of grid points 𝑥𝑖 = Cartesian coordinates 

𝑃 = pressure 𝑥, 𝑦, 𝑧 = Cartesian directions 

𝑞 = heat flux 𝜏𝑖̅𝑗  = spatially filtered shear stress 

𝑅𝑒 = Reynolds number 𝜏𝑖𝑗
𝑆𝐺𝑆 = subgrid scale shear stress  

𝑇 = temperature 𝜌̅ = spatially filtered density 

𝑡 = time 𝛿∗ = displacement thickness 

𝑈 = mean velocity 𝜇𝑙  = laminar dynamic viscosity 

Δ𝑈 = 𝑈2−𝑈1 = reference velocity   𝜇𝑡 = turbulent dynamic viscosity 

Superscripts   Subscripts   
~  Favre-filtered 𝑡  total condition 

−  Spatially-filtered 1  top stream 

𝑆𝐺𝑆  subgrid scale 2  bottom stream 

      

I. Introduction 

Use of the Reynolds Averaged Navier-Stokes (RANS) equations has become standard practice for aerodynamic 

analysis. However the Reynolds averaging procedure introduces additional correlation terms that must be modeled.  

These models work reasonably well for the equilibrium wall-bounded and free shear layer flows for which they were 

calibrated, but often require retuning of model coefficients for other flows.  These models also have severe 
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limitations in predicting unsteady, separated, or transitioning flow.  Increasing computational throughput has 

enabled the use of more sophisticated methods such as Direct Numerical Simulations (DNS) and Large-Eddy 

Simulations (LES). These tools are more deterministic and, unlike RANS, are less reliant on tunable constants. 

Consequently, they offer promising physical insights that RANS methods cannot. Despite this, there remains a great 

many issues to ensure the accuracy of LES. 

The primary objective of this work is to compare the benefits and shortcomings of a high-order method and a 

low-order method for performing LES of a compressible mixing layer. The high-order solver is the Wave-Resolving 

LES (WRLES) code [1-3] that employs a Dispersion Relation Preserving (DRP) scheme. The low-order solver is the 

Wind-US code [4] which employs the second-order Roe scheme. It is well known that second-order schemes are 

more convenient to use for complicated geometries due to their small stencil size. Additionally, second-order 

schemes can be easily adapted to unstructured grids whereas high-order schemes frequently are limited to structured 

grids and simple geometries. The advantage of high-order methods is that they can achieve the same level of 

accuracy using significantly fewer grid points compared to the low-order schemes. The work herein sets to examine 

whether low-order solvers, given sufficiently fine enough resolution, can produce the same level of accuracy as 

high-order methods. This effort also attempts to address the current state-of-the-art practice in performing LES of a 

compressible mixing layer. 

Several technologies stand to benefit from an enhanced understanding of compressible mixing in free shear 

flows. Examples include supersonic combustion, exhaust nozzles, and internal flows present in jet engines and 

scramjets, to mention only a few. High speed turbulent flows are often investigated using Reynolds Averaged 

Navier-Stokes (RANS) models, and at times with dilitation-based compressibility corrections. It is widely known, 

however, that these compressibility corrections are empirical at best and do not replicate the actual physics of 

compressible turbulent mixing layers [5-6]. Therefore, the longer term objectives of this work are to better 

understand the fundamentals of compressible turbulent free shear flows using LES and to apply that insight towards 

improving existing RANS turbulence models for engineering applications.  

Brown & Roshko’s [7] classical work on low-speed mixing layers made a key discovery in its noteworthy 

evidence of coherent large-scale spanwise oriented vortical structures. The formation of these large-scale “rollers” is 

triggered by the Kelvin-Helmholtz instability. As the spanwise rollers convect downstream they combine through 

pairing and tearing processes. This work led to a series of experimental studies investigating compressibility effects 

such as Chinzei et al.[8], Papamoschou & Roshko [9], Goebel and Dutton [10], Samimy & Elliot [11], Hall et al. 

[12], and Clemens & Mungal [13]. The experimental studies observed that the most significant effect of 

compressibility on a turbulent mixing layer is suppression of the growth rate relative to an incompressible mixing 

layer at the same velocity and density ratios. The experiments demonstrate that compressibility effects are greatest 

between convective Mach numbers of 0.5 and 1. The particular case examined here is the turbulent mixing between 

two supersonic streams at a moderate convective Mach number of 0.46. Similarly, numerical simulations have been 

performed by several researchers including Foysi and Sarkar [14], Freund et al.[15], and Pantano and Sarkar [16]. 

The numerical simulations showed that dilatation terms are relatively small and not affected by increasing 

convective Mach number, whereas the pressure-strain terms in the Reynolds stress transport decrease monotonically 

with increasing convective Mach number. The redistribution of the Reynolds stresses in turn lowers turbulent 

production, which results in reduced mixing layer growth rate. 

In this work, LES is employed to numerically investigate a reference turbulent mixing layer at moderate 

convective Mach number, 0.46. Two different flow solvers are used. The low-order solver employs a second-order 

upwind scheme while the high-order method implements Bogey & Bailly's [17-18] 11-point DRP scheme. The 

effects of numerical scheme, subgrid scale (SGS) modeling, and filtering are also investigated. Furthermore, a 

previous hybrid RANS-LES work concluded that an insufficient spanwise domain limited the development of the 

full 3D structures [19]. Therefore, the work herein, in addition to its primary purpose of comparing high-order and 

low-order methods, also seeks to analyze the effects of increasing the spanwise extent while maintaining the 

spanwise resolution. This type of parametric study was recently used with the same low-order technique to 

investigate sensitivity of separated bluff body flows to spanwise width [20]. 

Ideally, LES would be performed not only in the mixing region but also along the upstream channels to resolve 

their turbulent boundary layers. Recently, Inoue & Pullin [21] investigated the zero pressure gradient turbulent 

boundary layer through LES over momentum thickness Reynolds numbers of 𝑅𝑒𝜃 = 𝑂(103) − 𝑂(1012). This 

required a large number of grid points to resolve the boundary layer. In the present work focusing on the shear layer, 

the Reynolds numbers were 𝑅𝑒𝜃 = 5.1 𝑥 106 and 𝑅𝑒θ = 4.7 𝑥 106 for the top and bottom channel flows 

respectively. Fully resolving these turbulent boundary layers while also performing LES in the mixing region is 

computationally prohibitive. Therefore, the LES simulations are designed to focus on resolving the shear layer itself. 
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This will also enable a side-by-side comparison between the high-order method WRLES with the low-order method 

Wind-US.  

The paper is organized as follows: A description of the flow is provided in section II. In section III the 

formulation is discussed, while the details of the computational approach are given in section IV. A brief summary 

of the low-order solver Wind-US and the high-order solver WRLES is provided. Details of the grid, boundary 

conditions, and experimental conditions are also presented. Comparisons of the high-order and low-order method 

are presented in section V. The section begins with a general description of the flow and then considers specifics of 

numerical method, SGS modeling, and filtering. The importance of spanwise width is highlighted. The results 

section finishes with a discussion comparing the low-order and high-order method again but at coarser grid 

resolutions. Conclusions are presented in section VI. 

 

II. Description of the Flow 

The current simulations recreate case 2 of the experimental mixing layer tested by Goebel and Dutton [10]. The 

schematic in Figure 1 shows two supersonic streams separated by a thin splitter plate exiting into a long mixing 

section. The tunnel has a height of 48 mm and a width of 96 mm. The splitter tip separating the two flows has a 

thickness of 0.5 mm (an important length scale affecting vortex shedding) and the entrances of both streams into the 

mixing section have equal heights of 24 mm. The high-speed flow is located on the top with a Mach number of 1.91, 

while the bottom flow is at Mach 1.36. The convective Mach number calculated from the flow conditions is 𝑀𝑐 =
0.46, where 𝑀𝑐 = (𝑈1 − 𝑈2)/(𝑎1 + 𝑎2). The two flows are pressure matched at 49kPa. The total temperature of the 

top flow is 578 K while the bottom flow is at 295 K. The velocities are 𝑈1 = 700 𝑚/𝑠 and 𝑈2 = 399 𝑚/𝑠. 

The experiments used Laser Doppler Velocimetry (LDV) to measure velocities in the mixing section. The total 

viewing length of the optical instrumentation was 500 mm. Transverse velocity profiles at several streamwise 

locations were measured. The Reynolds normal stresses in the streamwise and transverse directions were measured; 

however, the normal stress in the spanwise direction was not measured. The LDV system was used to measure 

properties of the incoming boundary layers at the splitter tip. The boundary layer thickness, displacement thickness, 

and momentum thickness in each of the two streams feeding the mixing layer were measured just upstream of the 

splitter plate trailing edge. The spectra of the turbulent kinetic energy and the fundamental frequency of vortex 

shedding were not measured. 

 
Figure 1: Schematic of splitter tip separating the top flow from the bottom flow. 

 

Table 1. Experimental flow conditions. 

Parameter Top Flow Bottom Flow 

𝑀 1.91 1.36 

𝑈 (m/s) 700 399 

𝑇𝑡  (K) 578 295 

𝑃 (kPa) 49 49 

𝜌 (kg/m3) 0.51 0.79 

 

III. Formulation 

The Favre-filtered Navier-Stokes equations are solved numerically with both the high- and low-order methods. 

The viscosity and thermal conductivity are allowed to vary with temperature. Favre filtering is a density-weighted 

spatial filtering procedure that is applied to the time dependent Navier-Stokes equations to remove small-scale 

fluctuations that are too small to be resolved. The continuity, momentum, and energy equations are: 

Bottom Flow: M=1.36, U=399m/s, P=49kPa 

Top Flow: M=1.91, U=700m/s, P=49kPa 

 

   

500mm 

48mm 
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The density-weighted spatially-filtered velocity is denoted as 𝑢̃𝑖, while the spatially-filtered density and pressure are 

𝜌̅ and 𝑃̅ respectively. The stress tensor is 𝜏𝑖̅𝑗. For the scales that are too small for the scheme and grid to resolve, an 

optional subgrid scale model specifies 𝜏𝑖𝑗
𝑆𝐺𝑆 and 𝑞𝑗

𝑆𝐺𝑆.  

 

IV. Computational Approach 

Two different numerical approaches are employed herein with the purpose of investigating whether a low-order 

scheme is capable of reproducing the results of a high-order scheme. High-order methods require less grid to resolve 

turbulent structures, whereas low-order methods require additional grid points to achieve the same level of accuracy. 

However, the large stencil sizes and complex numerics typically limit high-order methods to simple geometries. If 

the low-order method is capable of producing the same answer as the high-order method, then the low-order method 

may be more attractive for other geometries that are more complex than the relatively simple shear layer that is the 

focus of this paper. 

 

A. Flow Solvers 

1. WRLES  

The high-order solver is the Wave-Resolving LES (WRLES) code [1-3]. It is a finite difference code which 

employs the Dispersion Relation Preserving (DRP) scheme developed by Bogey & Bailly [17-18]. The stencil size is 

11 points and is formally fourth-order accurate. While a traditional fourth-order scheme uses fewer points in the 

stencil, the additional points in the DRP scheme are used to minimize the dispersion error. It is an explicit central 

scheme similar to the classic tenth-order central scheme but with weights carefully chosen to minimize the 

dispersion error. Since it is a central differencing scheme, it is not inherently dissipative. A spatial filter, developed 

specifically to match the resolution of the differencing scheme, is used to preserve numerical stability. A coefficient 

multiplying the effect of the filter has been added, so that the magnitude of the dissipation can be controlled. The 

filter’s purpose and effects are strictly to help improve numerical stability. The DRP filter coefficient used was 0.5. 

Temporal discretization is performed using a low-dissipation and low-dispersion forth-order Runge-Kutta algorithm 

summarized in Berland et. al [18]. Three subgrid scale models have been implemented: Smagorinksy's, Vreman's, 

and a dynamic Smagorinsky. In particular, Vreman’s [22] algebraic SGS model is used herein since it is less 

dissipative than the Smagorinsky subgrid model and not as computational intensive as the dynamic model.  

WRLES uses the Message Passing Interface (MPI) standard to divide the domain across nodes and the Open 

Multi-Processing (OpenMP) directive to parallelize work on each node. In order to maintain order accuracy across 

interfaces, WRLES uses overlapping, point-matched zone coupling. 

 

2. Wind-US 

The low-order solver is Wind-US, the production flow solver of the NPARC Alliance. While it has historically been 

used primarily in RANS mode, the code may be used in LES or hybrid RANS-LES mode. It is capable of working 

with unstructured meshes as well as curvilinear structured meshes. It has several choices for temporal and spatial 

discretization as well as different options for flux splitting that are well documented [4]. For this particular problem, 

the numerical scheme used in the Wind-US CFD code is the second-order Roe Physical upwinding finite-volume 

scheme for spatial discretization and an implicit first-order time-stepping scheme. The Roe Physical scheme is based 

upon the original Roe scheme but modified for stretched grids. Note that while implicit temporal schemes require a 

matrix inversion, they are much more stable than explicit time schemes. When run in LES mode, Wind-US employs 

the Implicit (or Numerical) LES (ILES) philosophy. As discussed by Pope [23], this approach assumes that the 

numerical scheme and grid act like a subgrid scale model, and so no explicit SGS model is used.  

For parallelization, Wind-US was run with the PVM (Parallel Virtual Machine) directive to create a parallel 

computing system. Wind-US uses abutting, point-matched zone coupling that is second-order accurate across 

interfaces. Within Wind-US, the MPI directive is also available for parallel computing. 

http://www.sciencedirect.com/science/article/pii/S0021999103004662
http://www.sciencedirect.com/science/article/pii/S0021999103004662
http://www.sciencedirect.com/science/article/pii/S0021999103004662
http://www.sciencedirect.com/science/article/pii/S0021999103004662
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B. Grid 

The baseline grid used is structured as shown in Figure 2. The baseline mesh uses 14.4 million points to resolve 

the LES mixing section and has a thin spanwise width of 6 mm. Forty one points resolve the 0.5 mm splitter tip 

yielding a Δ𝑦 = Δ𝑥 = 0.0125 𝑚𝑚 in this region. Grid details such as the number of points, domain size, and 

minimum and maximum grid spacing are provided in Table 2 for the mixing region. The total length of the mixing 

section is 𝐿 = 500 𝑚𝑚 as may be observed in Figure 2. Downstream of the splitter plate towards the outflow the 

grid is stretched in the x-direction. The extent of grid stretching is deduced by comparing the minimum and 

maximum grid spacing. 

 
Figure 2: Boundary conditions and dimensions of the LES mixing section (only every 8th point is plotted). 

 

Table 2. Grid properties of the mixing section. 

Parameter Direction 

 𝑥 𝑦 𝑧 

Number of points 1025 425 33 

Length of domain (𝑚𝑚) 500 48 6 

Minimum spacing (𝑚𝑚) 0.0125 0.0125 0.1875 

Maximum spacing (𝑚𝑚) 5 0.2 0.1875 

 

C. Boundary Conditions 

1. General Boundary Treatment 

The flow conditions are taken from the experiments of Goebel & Dutton [10]. The flow in the computational 

domain is supersonic throughout, thereby simplifying inflow and outflow boundary treatments (Figure 2). Inflows 

are fixed and the outflow is extrapolated. The upper and lower tunnel walls are assumed to be sufficiently far away 

from the shear layer such that they do not affect the mixing and are set as inviscid walls. Periodic boundaries are 

imposed on the spanwise sides of the domain. Their purpose is to simulate an infinite span and avoid the cost of 

modeling the sidewalls. The experiments had a finite span of 96 mm. As mentioned previously and discussed in 

greater detail later in this paper, the width of the spanwise dimension was investigated as a significant part of this 

work. 

 

2. Inflow Boundary Treatment 
In the experiment, turbulent boundary layers were present on the splitter plate upstream of the mixing section. 

Dutton & Goebel [10] provided the values of the  boundary layer thickness, displacement thickness, and momentum 

thickness.  However, the actual velocity profiles and turbulent intensities were not reported. The best method for 

simulating these turbulent boundary layers would be a complete LES of the upstream region, producing unsteady 

turbulent boundary layers that match the experiment's integral thickness parameters. However, this type of analysis 

is cost prohibitive given the extremely small turbulent scales that would exist in a boundary layer at these Reynolds 

numbers. 

In this study, the inflow conditions were obtained from a separate two-dimensional RANS calculation of the 

mixing layer and upstream channels using the Menter Shear Stress Transport (SST) turbulence model.  To do so, the 

lengths of the upstream ducts were varied until they produced RANS profiles that matched the experimental values 

of the displacement thicknesses. Table 3 compares the RANS-obtained profiles with the experiment by listing the 

computed values of displacement thickness 𝛿∗, mean streamwise velocity 𝑈, and the area-averaged pressure P. 

Notice that the RANS solution indicates that a pressure-matched flow of 49kPa is being delivered as in the 

experiments of Goebel-Dutton [10]. The incoming velocity profiles are depicted in Figure 3 and have displacement 

thicknesses matching the experiments to within 3.5% for the top flow and within 6% for the bottom flow. The 

resulting RANS mean-flow profiles were used as fixed conditions at the inflow plane to the mixing section. A 

limitation of this boundary treatment is that the RANS method only provides a steady state profile to an unsteady 

LES mixing region [24].  

48mm 

500mm 

𝑦 

𝑥 

Supersonic 

Outflow 
Inviscid Wall 

Inviscid Wall 

Supersonic 

Inflow 
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Table 3. Properties of the incoming flow delivered to the LES mixing section. 

Solution Top Flow Bottom Flow 

 𝛿∗ 𝑚𝑚 𝑈, 𝑚/𝑠 𝑃, 𝑘𝑃𝑎 𝛿∗ 𝑚𝑚 𝑈, 𝑚/𝑠 𝑃, 𝑘𝑃𝑎 

RANS Upstream 0.9318 700.3 48.898  0.4681 398.8 48.940 

Experiment  0.90 700 49 0.44 399 49 

 
Figure 3: Velocity profile of the flow entering the shear layer. 

 

D. Time averaging and sampling procedure 

To ensure numerical stability, the maximum time-step for the implicit low-order solver was found to be 𝑑𝑡 =
0.05𝜇𝑠, while the explicit high-order solver was more stringent and the maximum time step was 𝑑𝑡 = 0.01𝜇𝑠. At 

the beginning of the simulations, there is a transient wave that travels through the domain. This originates from a 

normal shock produced at solution start-up. The time for all initial transient effects to be eliminated and before 

statistics can be gathered is no less than 5.5 FTTs (Flow Thru Times). The Flow Thru Time is defined as the time it 

takes a particle inside the shear layer to travel from the splitter tip to exit: 1𝐹𝑇𝑇 = 𝐿/𝑈𝐴𝑉𝐺 = 0.51 milliseconds. 

𝑈𝐴𝑉𝐺  is an estimate of the speed inside the shear layer taken to be the average velocity of the top and bottom 

streams. Extending the start-up wait time until 9.5 FTTs was found to be unnecessary, since statistics gathered after 

employing these two different start-up times were identical. 

The effect of sampling duration was examined by gathering second-order statistics over periods of 9.5 FTTs and 

33 FTTs that were then time averaged. Note that both of those sampling durations are considerably long. The 

resulting rms plots were compared and it was found that extending the sampling duration from 9.5FTTs to 33FTTs 

did not affect the rms values. Turbulent statistics were gathered at three frequencies corresponding to every 5 𝜇𝑠, 1 

𝜇𝑠, and 0.4 𝜇𝑠. Those frequencies were all extremely high and the results were found to be identical. A similar study 

varying sampling duration and frequency was performed by Mankbadi & Georgiadis [20]. After the turbulent 

statistics have been gathered, the power spectra is obtained by sampling the data every 0.05 𝜇𝑠 after which a fast 

Fourier transform is performed to identify the fundamental vortex shedding frequency. 
 

V. Results and Discussion 

All the computations were performed on the NASA Pleiades supercomputing platform which is ranked amongst 

the top ten U.S. supercomputers. Pleiades is made up of tens of thousands of nodes capable of 4.49 petaflop/s. Each 

node has two processors and each processor has either 6, 8, 10, or 12 cores. A typical simulation adhered to the 

following procedure: 1) initialize the flow field and wait for the start-up transient wave to exit the domain, 2) begin 

collecting data required for computing time-averaged turbulent intensities, and 3) at a much higher sampling rate 

(about one hundred times the fundamental) gather data to compute the power spectra of the flow. This procedure 

was used for both flow solvers. Wind-US simulations typically employed 39 nodes with a total of 468 cores and the 

turnaround time for the entire procedure was about a week. WRLES utilized 129 nodes with a total of 1536 cores 

and also had a turnaround time of about a week. 

Figure 4 shows dimensionless density contours of the mixing layer obtained using the two flow solvers for the 

baseline grid with 6 mm spanwise width. The high-order method, WRLES, is compared against the low-order 

method, Wind-US. Note that the size of the structures grows as the vortices pair and propagate downstream. There 

are more organized structures that can be seen in the WRLES plot whereas in the Wind-US plot the structures 
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appear to be smeared (Figure 4A and B). The shock structure also slightly differs between the two. There are more 

reflections present in Wind-US than with WRLES. Wind-US’s small stencil and Riemann solver are adept at shock 

capturing whereas WRLES reduces the order to avoid smearing the shock with its larger stencil. The von Karman 

shedding is evident in Figure 4C and D where vortices are being produced just downstream of the splitter tip. The 

close-up views of the splitter tip demonstrate that the high-order method better resolves vortex shedding than the 

low-order method. Further downstream at 𝑥 = 100𝑚𝑚, the Wind-US solution appears to maintain the regular von 

Karman pattern while the WRLES solution appears to have broken down into a more irregular pattern. 
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Figure 4: Dimensionless density contours of the mixing section for A) the high-order solver WRLES and B) low-

order solver Wind-US. Close up views of the splitter tip showing von Karman shedding for C) WRLES and D) Wind-

US.  
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(B) 

Wind-US 

Wind-US 

(D) 

WRLES 
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A. Flow Solver Comparison 

1. Effects of Flow Solvers 

Streamwise mean and rms velocities from the high-order method WRLES and the low-order method Wind-US 

are compared in Figure 5 (the transverse and spanwise rms velocities are presented in subsection B). Recall that the 

Wind-US approach employed a second-order finite volume solver and WRLES is a formally fourth-order accurate 

finite difference method employing an eleven-point DRP stencil. Both methods employ the ILES approach where no 

subgrid scale model is used. Despite the significant differences in numerical methodology, notice the relatively close 

agreement between the two numerical methods shown in Figure 5. The rms profiles at three different axial stations 

are very similar (Figure 5D-F), and the mean velocity profiles match fairly well (Figure 5B-C). The largest 

difference in mean velocity is in the wake at 𝑥 = 50𝑚𝑚 in Figure 5A. 

Figure 6 compares plots of the transverse velocity spectra of both numerical methods. The frequency is scaled 

by the fundamental frequency of vortex shedding 𝑓𝑣𝑠. The vortex shedding frequency, 𝑓𝑣𝑠, predicted is 124.51 kHz 

and 134.28 kHz by Wind-US and WRLES respectively. The data from the Wind-US solution shows a sub-harmonic 

exists at 𝑓/𝑓𝑣𝑠 = 0.5. The vortices produced at the tip recombine further downstream but at a lower frequency than 

that at which they were produced [25]. The vortices coalesce at the frequency of the sub-harmonic, 𝑓/𝑓𝑣𝑠 = 0.5. The 

sub-harmonic peak is not only present very close to the tip at 𝑥 = 10𝑚𝑚 but persists until 𝑥 = 100𝑚𝑚. The 

fundamental frequency is the strongest at 𝑥 = 10𝑚𝑚 close to the tip and diminishes downstream, until it has 

disappeared by 𝑥 = 100𝑚𝑚. 

The sub-harmonic cannot be seen in the spectra coming from WRLES. In addition, the spectra coming from 

WRLES shows that all the low frequency peaks have been damped out by 𝑥 = 50𝑚𝑚 and there is more energy in 

the smaller-scale, higher-frequency structures. The high-order numerics in WRLES can resolve smaller scales of 

turbulence, and these scales may be responsible for damping out the large-scale structures that persist in the Wind-

US solution. Because of the differences in the fundamental frequency predicted and overall spectra, it is a little 

counterintuitive that two numerical methodologies would agree to such an extent in terms of the velocity and rms 

profiles shown in Figure 5. 



10 

 
Figure 5:  Comparison between the low-order solver Wind-US and the high-order solver WRLES on the 14.4 million 

grid. For three different axial stations, the shear layer’s mean streamwise velocity A) at 𝑥 = 50𝑚𝑚, B) at 𝑥 =
100𝑚𝑚, and C) at 𝑥 = 150𝑚𝑚. The rms streamwise velocity D) at 𝑥 = 50𝑚𝑚, E) at 𝑥 = 100𝑚𝑚, and F) at 𝑥 =
150𝑚𝑚. 
 

  

(A) (D) 

(B) (E) 

(C) (F) 
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Figure 6:  Spectra of the transverse velocity for both numerical methods on the 14.4 million point grid. 

 

2. Effects of SGS Model 

In the previous section, the effects of the numerical scheme used by the high-order and low-order methods were 

examined. This section examines the effects of subgrid scale modeling on the 11pt DRP scheme solution. An 

additional case was computed with WRLES using Vreman's subgrid model. The WRLES with SGS and WRLES 

without SGS cases are compared in Figure 7 and   

Figure 8. As evident from the data, the mean profile and rms profile are unaffected. The shedding frequency 

predicted by WRLES is 134.28 kHz for both cases and only minor differences are seen in the spectra. Therefore, the 

effect of SGS modeling is negligible for the 14.4 million point grid. In Figure 9, a plot of the SGS viscosity 

normalized by the laminar viscosity is provided. It is clear that the subgrid scale model is only active within the 

shear layer. Closer inspection of the scale reveals that 𝜇𝑡/𝜇  does not exceed unity anywhere in the mixing section. 

This explains why SGS effects are negligible for this problem. The grid is fine enough such that the vast majority of 

turbulence is computed directly and the SGS model does not add a significant amount of dissipation. If the grid was 

coarsened, then perhaps the SGS model would come into play. The fact that 𝜇𝑡/𝜇  does not exceed unity also helps 

explain why the second-order method performed very well. The grid was fine enough in the mixing region, making 

any benefit of a higher order scheme irrelevant. The coarser grid and SGS effects will be explored in the next 

subsection. 
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Figure 7:  Effect of subgrid scale modeling on the shear layer’s streamwise mean and rms velocity at three different 

locations. The streamwise velocity A) at 𝑥 = 50𝑚𝑚, B) at 𝑥 = 100𝑚𝑚, and C) at 𝑥 = 150𝑚𝑚. The rms 

streamwise velocity D) at 𝑥 = 50𝑚𝑚, E) at 𝑥 = 100𝑚𝑚, and F) at 𝑥 = 150𝑚𝑚. 

(A) (D) 

(B) (E) 

(C) (F) 
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Figure 8:  Effects of SGS modeling on the spectra of the transverse velocity. 

 

 

 
Figure 9: The turbulent subgrid scale viscosity normalized by the laminar viscosity for the 14.4 million point grid. 
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3. Effect of Grid Density 

Recall in Section A-1, we demonstrated that the low-order solver could produce similar mean flow and turbulent 

statistics to the high-order solver on a fine grid. This section compares the two codes on a coarser grid. The 

coarsened grid used every other point in the streamwise and transverse directions while retaining the same spanwise 

width and points. 

The results of the grid study using the high-order solver WRLES are presented in Figure 10. Overall, the high-

order solver performs nearly as well on the coarser grid. Close to the splitter tip, even the peak streamwise rms 

velocity values differ very little between the two resolutions. However, the mean flow predictions in the wake of the 

splitter tip are sensitive to resolution. Further away from the splitter tip, the mean flow and turbulent intensities 

predicted by the 3.6 million point grid are almost identical to the fine 14.4 million point grid. Figure 10 also 

demonstrates that effects of SGS modeling are still very minor, despite the coarser grid employed. Comparing the 

SGS viscosities of Figure 9 for the finer grid to those of the coarsened grid in Figure 11, demonstrates that as the 

resolution was coarsened the SGS viscosity increases, but is still on the same order as the laminar viscosity. 

The results of the grid study using the low-order solver Wind-US are presented in Figure 12. These results 

demonstrate that the low-order method changes significantly at the coarse resolution. The low-order method cannot 

resolve the complex flow physics of vortex shedding, mixing, and shear layer growth. The inherent dissipation of 

the low-order scheme dampens out the instabilities and inhibits proper turbulent growth. There are substantial 

differences in both the mean flow velocities and the rms quantities.  Not only is the peak rms value diminished but 

the extent of the profile across the shear layer is reduced significantly from that observed with the higher resolution. 

In other words, very little turbulent mixing is occurring. 

Figure 13 shows the transverse velocity spectra comparing the high-order and low-order methods at the coarse 

resolution. Note that the high-order method has well-defined sharp peaks at the fundamental frequency and its 

multiples. However, the low-order method has a blunt peak at the fundamental frequency. Recall the fundamental 

frequency predicted by WRLES on the fine grid was 134.28 kHz, here for the coarse grid it is higher at 141.91. 

Likewise recall Wind-US predicted a fundamental frequency of 124.51 kHz, for the coarser grid it is also higher 

128.17 kHz. 

These findings demonstrate the expected result that high-order algorithms need less resolution than low-order 

methods to achieve the same level of accuracy. Unlike high-order methods, low-order methods are expected to fail 

at coarse resolutions and indeed did in this study. The increase in accuracy that high-order methods offer means that 

high Reynolds number problems become tractable at more reasonable grid sizes. With regards to computational wait 

time, high-order methods typically incorporate multi-stage time stepping and use large stencils that drives up the 

computational cost. Nevertheless, in many cases high-order methods can deliver that same level of accuracy at a 

cheaper computational cost since less grid is required. However, for the current problem, the two methods’ 

computational costs were about the same. This is primarily due to two reasons: (1) the explicit time-stepping of the 

high-order code requires a smaller time step than the implicit time stepping of the low-order method, and (2) the 

low-order method needs to regularly issue a checkpoint where the entire data is written to disk then an external 

process strips down the file to keep only the desired data. If not for this limitation in I/O performance, the low-order 

method would likely have been much faster than the higher-order method for the same grid. 
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Figure 10:  Grid study using WRLES with a spanwise width of 6mm. The mean streamwise velocity A) at 𝑥 =
50𝑚𝑚, B) at 𝑥 = 100𝑚𝑚, and C) at 𝑥 = 150𝑚𝑚. The rms streamwise velocity D) at 𝑥 = 50𝑚𝑚, E) at 𝑥 =
100𝑚𝑚, and F) at 𝑥 = 150𝑚𝑚. 

 

(A) (D) 

(B) (E) 

(C) (F) 

WRLES WRLES 
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Figure 11: The turbulent subgrid scale viscosity normalized by the laminar viscosity for the 3.6 million point grid. 
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Figure 12: Grid study using Wind-US with a spanwise width of 6mm. The mean streamwise velocity A) at 𝑥 =
50𝑚𝑚, B) at 𝑥 = 100𝑚𝑚, and C) at 𝑥 = 150𝑚𝑚. The rms streamwise velocity D) at 𝑥 = 50𝑚𝑚, E) at 𝑥 =
100𝑚𝑚, and F) at 𝑥 = 150𝑚𝑚. 

 

  

(A) (D) 

(B) (E) 

(C) (F) 

Wind-US Wind-US 
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Figure 13:  Spectra of the transverse velocity for both numerical methods on the 3.6 million point grid. 
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B. Effect of Spanwise Width  

 

Table 4. Spanwise width study using WRLES with SGS. 

Spanwise Width Resolution Grid Points (million) 𝑀𝑎𝑥 𝑊𝑟𝑚𝑠/Δ𝑈 

   𝑥 = 50𝑚𝑚 100𝑚𝑚 150𝑚𝑚 
6mm 1025 x 425 x 33 14.4 0.0947 0.09343 0.07341 

12mm 1025 x 425 x 65 28.3 0.1005 0.1248 0.1139 

24mm 1025 x 425 x 129 56.2 0.1056 0.1362 0.1315 

48mm  1025 x 425 x 257 112.0 0.1106 0.1356 0.1253 

 

Periodic boundary conditions are imposed in the spanwise direction to simulate an infinite span and avoid 

modeling the sidewalls. Selection of too small of a spanwise width cannot guarantee accurate capturing of the three-

dimensional nature of vortex dynamics. To avoid imposing a nonphysical spanwise mode, the spanwise extent and 

resolution must be large enough to capture the wavelengths of the largest turbulent structures in the domain. 

An insufficient spanwise depth has been shown to artificially dampen the spanwise formation of vortices and 

resemble a 2D instability [20]. In some cases, a 2D instability predicts higher growth rates than a three dimensional 

instability [26]. It is necessary to have a sufficient spanwise width to allow for the formation of three-dimensional 

coherent structures. Four simulations are performed here using the high-order method, with various spanwise widths 

in order to determine if:  (1) artificial suppression is present when the spanwise width is smaller than the length scale 

of the largest coherent structure, (2) this artificial suppression is eliminated as the spanwise width is extended to be 

several times larger than the dominant length scale, and (3) as the mixing layer grows downstream, the size of the 

coherent structure grows thereby requiring a larger spanwise depth to be resolved. 

WRLES with the SGS model was used to study the effect of the spanwise width. Table 4 shows the grid 

resolution as the spanwise domain is doubled three times consecutively. Georgiadis et al. [19] simulated this same 

flow and noted significant differences in rms statistics when examining much smaller spanwise depths ranging from 

1𝑚𝑚 to 6𝑚𝑚. The baseline grid was chosen to have the largest spanwise depth considered by Georgiadis et al. [19] 

of 6𝑚𝑚 and had a spanwise grid spacing of Δ𝑍 = 6𝑚𝑚/32. Keeping the spanwise grid spacing fixed, the spanwise 

width was extended up to 48𝑚𝑚, utilizing a total of 112 million grid points. The peak values of 𝑤𝑟𝑚𝑠 were also 

obtained. The streamwise and transverse resolution was unchanged.  

Figure 14 demonstrates the effects of increasing the spanwise width by plotting the streamwise vorticity at the 

three axial stations for spanwise widths of 6𝑚𝑚, 12𝑚𝑚, 24𝑚𝑚, and 48𝑚𝑚. Evidently the size of the structures is 

small at 𝑥 = 50𝑚𝑚, but as they propagate downstream the structures grow in size and by 𝑥 = 150𝑚𝑚 the 

structures have grown considerably. The effect of increasing the spanwise width is most easily observed at 𝑥 =
150𝑚𝑚. For a spanwise width of 6mm, the development of the structures is suppressed, but as the spanwise width 

is increased to 48mm, the structures are allowed to develop and thus appear to be bigger. The size of the turbulent 

structures relative to the mixing layer thickness can be seen by comparison with the value of b that is shown to the 

right of Figure 14. 

 
Figure 14: Effect of spanwise width on the dimensionless streamwise vorticity 
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Although the mean flow is not affected by spanwise widths, the turbulence intensities are sensitive. The 

turbulence intensities in all three directions and turbulent kinetic energy are compared for all four spanwise widths at 

𝑥 = 50𝑚𝑚 (Figure 15), 𝑥 = 100𝑚𝑚 (Figure 16), and 𝑥 = 150𝑚𝑚 (Figure 17). At axial stations of 50mm and 

100mm, the peak values of 𝑢𝑟𝑚𝑠 and 𝑣𝑟𝑚𝑠 are almost unchanged as the spanwise width was gradually increased 

from 6mm to 48mm. At 𝑥 = 150𝑚𝑚 (Figure 17A-B), the peak value in 𝑣𝑟𝑚𝑠 is also unchanged but the peak 𝑢𝑟𝑚𝑠 

value slightly increases. From examining 𝑢𝑟𝑚𝑠 and 𝑣𝑟𝑚𝑠, the need to extend the spanwise domain is not apparent 

since 𝑢𝑟𝑚𝑠 and 𝑣𝑟𝑚𝑠 are not changing appreciably. However, close inspection of 𝑤𝑟𝑚𝑠 and 𝑘 shows that 𝑤𝑟𝑚𝑠 is 

artificially being suppressed for the 6mm case (Figure 15C-D, Figure 16C-D, Figure 17C-D). Expanding the width 

of the domain increases the peak 𝑤𝑟𝑚𝑠 at the 𝑥 = 50𝑚𝑚 and 𝑥 = 100𝑚𝑚 locations and 𝑘 correspondingly 

increases. This differs from a similar study of spanwise width for a square cylinder computation [20]. For that 

problem 𝑤𝑟𝑚𝑠 also increased with an increase in spanwise width but the 𝑘 remained constant, forcing a rebalance of 

the energy between 𝑢𝑟𝑚𝑠, 𝑣𝑟𝑚𝑠, 𝑎𝑛𝑑 𝑤𝑟𝑚𝑠. 

Note that at 𝑥 = 50𝑚𝑚, where the vortex size is small, the effect of the width on 𝑤𝑟𝑚𝑠 is relatively small. 

However, as the turbulent structures increase in size moving further downstream, a larger spanwise width is 

required. Hence, at 𝑥 = 100𝑚𝑚, note that the peak rms value is identical between the 24mm and 48mm case. 

Further downstream at 𝑥 = 150𝑚𝑚, the peak value of 𝑤𝑟𝑚𝑠 of the 48mm case lies between the 12mm and 24mm 

cases. This demonstrates that extending the spanwise width eliminates artificial suppression of the spanwise rms 

value.  

In the aforecited work of Mankbadi & Georgiadis [20] on a square cylinder, a spanwise depth ten times greater 

than the cylinder’s diameter demonstrated the 𝑤𝑟𝑚𝑠 convergence. For a cylinder at low Reynolds number, the shed 

vortices are about the size of the cylinder’s diameter. However, for the shear layer examined here, the relevant 

length scale is the shear layer width, which grows downstream. The Kelvin-Helmholtz instability sets off the vortex 

shedding process that then becomes turbulent mixing downstream. As a consequence, the size of the largest 

structure increases axially. Hence, at 𝑥 = 50𝑚𝑚 where the length scale is small, a spanwise depth of 6mm is 

sufficient and spanwise width convergence is observed in Figure 15C. Further downstream at 𝑥 = 150𝑚𝑚, the size 

of the length scale has grown and hence a variation in 𝑤𝑟𝑚𝑠 is observed in Figure 17C.  

The relevant length scale is the shear layer thickness which correlates with the size of the largest coherent 

structure. A closer examination of the shear layer thickness is necessary to assess the ratio between the thickness and 

spanwise width at which spanwise width independence is reached. The shear layer thickness was defined by Goebel 

& Dutton [10] as 𝑏 = 𝑦0.90 − 𝑦0.10, where 𝑦0.90 is the location corresponding to 𝑈∗ = 0.90. Recall 𝑈∗ is normalized 

such that at the top flow it is one and at the bottom flow it is zero. From Table 5, note that at 𝑥 = 50𝑚𝑚 the shear 

layer thickness is 𝑏 = 2.5𝑚𝑚, while it has grown to the shear layer thickness of 4.4𝑚𝑚 at 𝑥 = 150𝑚𝑚 (see Table 

5). 

Note that the  𝑢𝑟𝑚𝑠 for the 6mm case in Figure 15A is identical to the 48mm case, thus spanwise width 

independence has been reached at 6mm. When the 6mm width is normalized by the 2.5mm thickness at 𝑥 =

50𝑚𝑚 it yields a ratio of 2.3. Likewise in Figure 17C the peak 𝑤𝑟𝑚𝑠 value for the 48mm case lies between the 

12mm and the 24mm cases, suggesting that they are relatively close at a spanwise width of 12mm. When the 12mm 

width is normalized by the 4.4mm thickness at 𝑥 = 150𝑚𝑚 it yields a ratio of 2.7. These results suggest that the 

solution becomes domain independent when the spanwise width is 2.5 times larger than the mixing layer thickness.  

For the shear layer case investigated herein, it was possible to extend the domain out until 48mm. This should 

ensure uninhibited growth of the turbulent structures, even at the furthest downstream measurement location of 

450mm. For stations much beyond that, the spanwise width would likely need to be extended even more.  However, 

at some point the spanwise domain cannot be extended without taking sidewall effects into consideration. The 

proposed factor of 2.5 cannot necessarily be generalized to other more complex flows.  For other similar problems 

where resolution is scarce, a spanwise width that is only 2.5 times larger than the relevant length scale may be 

sufficient to prevent artificial suppression of 𝑤𝑟𝑚𝑠. 
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Figure 15:  At 𝑥 = 50𝑚𝑚, the effect of spanwise width on the shear layer’s A) streamwise rms velocity, B) 

transverse rms velocity, C) spanwise rms velocity, and D) the turbulent kinetic energy. 

  

(A) (B) 

(C) (D) 
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Figure 16:  At 𝑥 = 100𝑚𝑚, the  effect of spanwise width on the shear layer’s A) streamwise rms velocity, B) 

transverse rms velocity, C) spanwise rms velocity, and D) the turbulent kinetic energy. 

(A) (B) 

(C) (D) 
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Figure 17: At 𝑥 = 150𝑚𝑚, the  effect of spanwise width on the shear layer’s A) streamwise rms velocity, B) 

transverse rms velocity, C) spanwise rms velocity, and D) the turbulent kinetic energy. 

 

Table 5.  Shear layer thickness. 

Location 

𝑥 (𝑚𝑚) 

LES (𝑧 = 48𝑚𝑚) 

𝑏(𝑚𝑚) 

𝐸𝑥𝑝.   
𝑏(𝑚𝑚) 

50 2.549 3.241 

100 3.480 4.508 

150 4.426 5.284 

 

  

(A) (B) 

(C) (D) 



24 

VI. Conclusions 

This work compared a high-order method with a low-order method for performing large-eddy simulations 

(LES). The high-order method (WRLES) employed an eleven-point DRP scheme that is formally fourth-order 

accurate in space. For time stepping, it used the four-stage Runge-Kutta method, which is fifth-order accurate 

locally. For subgrid scale modeling, it uses Vreman’s model. The low-order method (Wind-US) is second-order 

accurate spatially and uses the Roe Physical scheme. For time stepping, it used an implicit backward Euler step that 

is first-order accurate locally, and does not utilize any subgrid scale modeling. LES were performed using both 

methods to capture the turbulent mixing between two supersonic streams at a convective Mach number of 0.46. The 

high-order and low-order methods were evaluated at two different levels of grid resolution. In order to compare with 

the experiment, the inflow profiles for LES of the shear layer were obtained using Reynolds Averaged Navier-

Stokes (RANS) modeling over the upstream splitter plate such that the displacement thickness matched the 

experimental value reported. The results presented in this paper are summarized as follows: 
 For a fine grid resolution, the low-order method produced a similar solution to the high-order method. Both 

methods predict turbulent stresses that are in good agreement with experimental data. 
 Effects of subgrid scale modeling were found to be negligible at both resolutions using the higher order 

method and the Vreman SGS model. At even coarser resolutions, the SGS model might have a larger 

effect.  
 WRLES and WIND-US density contours were compared. For both methods, vortex shedding was observed 

to originate at the splitter tip and quickly transition to turbulence. More organized structures were seen with 

the high-order method whereas those structures appeared to be smeared with the low-order method. 

 The time for all initial transient effects to be eliminated and before statistics can be gathered is no less than 

5.5 FTTs (Flow Through Times). The recommended sampling duration is 9.5 FTTs or longer. Any time-

averaging window that meets these two conditions will not produce any substantial uncertainty.  

 When the DRP filter was nearly turned off, it was affirmed that its purpose is primarily for numerical 

stability and does not act as a SGS model. Thereby confirming that the reason the low-order and high-order 

method agreed was because the grid was sufficiently fine enough. 

 For a coarse grid of 3.6 million points, the high-order flow solver arrived at the same solution it reached 

with the 14.4 million point fine grid. However, the low-order solver did not demonstrate grid independence 

between the coarse and fine grid. Thus, high-order algorithms need less resolution than low-order methods 

to achieve the same level of accuracy. 

 We conducted a parametric study for the effect of the spanwise width on the accuracy of the solution by 

varying the width from a 6mm depth to a 48mm depth. As the shed vortices travel downstream and grow in 

size, the spanwise width may not be large enough to resolve all the spanwise modes and may introduce 

artificial ones. The peak root-mean-square of the spanwise fluctuation, 𝑤𝑟𝑚𝑠 , was found to increase by 

fifty percent, when the spanwise width was increased from 6mm to 48mm. A spanwise width that is at least 

2.5 times larger than mixing layer thickness was found to be necessary to capture three-dimensionality of 

vortex shedding. 

 Despite the differences in parallelization and time-stepping scheme, the two method’s computational costs 

were about the same. The larger stencil size and explicit time-stepping of the high-order code resulted in a 

larger computational cost for a given grid size compared to the low-order, implicit time-stepping code.  

However, the input/output performance of the low-order code was slowed by the need to regularly 

checkpoint the solution and spawn an external tool to extract the unsteady flow information.   

The high-order method herein proved to be more accurate on a coarse mesh when compared against the low-

order method. The small stencils of low-order methods are advantageous for their ability to handle complicated 

geometries whereas high-order methods are constrained by a large stencil size. The work herein establishes that low-

order methods can be used for LES but require a larger number of grid points than their counterpart. Historically, 

most high-order methods do not retain their accuracy with unstructured grids. Recently, unstructured grids are 

favored for the inherent ability to redistribute mesh points where needed and remove unnecessary mesh points. 

Ideally the benefits of low-order and high-order methods would be combined by creating stable high-order 

unstructured algorithms. Such a method may push the state of the art by enabling high-order unstructured LES of 

practical applications. 
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