225 research outputs found
Comparing Competing Theories on the Causes of Mandate Perceptions
The discussion of presidential mandates is as certain as a presidential election itself. Journalists inevitably discuss whether the president-elect has a popular mandate. Because they see elections as too complex to allow the public to send a unitary signal, political scientists are more skeptical of mandates. Mandates, however, have received new attention by scholars asking whether perceptions of mandate arise and lead representatives to act as if voters sent a policy directive. Two explanations have emerged to account for why elected officials might react to such perceptions. One focuses on the President’s strategic decision to declare a mandate, the second on how members of Congress read signals of changing preferences in the electorate from their own election results. We test these competing views to see which more accurately explains how members of Congress act in support of a perceived mandate. The results indicate that members respond more to messages about changing preferences than to the president’s mandate declaration
A CMB lensing mass map and its correlation with the cosmic infrared background
We use a temperature map of the cosmic microwave background (CMB) obtained
using the South Pole Telescope at 150 GHz to construct a map of the
gravitational convergence to z ~ 1100, revealing the fluctuations in the
projected mass density. This map shows individual features that are significant
at the ~ 4 sigma level, providing the first image of CMB lensing convergence.
We cross-correlate this map with Herschel/SPIRE maps covering 90 square degrees
at wavelengths of 500, 350, and 250 microns. We show that these
submillimeter-wavelength (submm) maps are strongly correlated with the lensing
convergence map, with detection significances in each of the three submm bands
ranging from 6.7 to 8.8 sigma. We fit the measurement of the cross power
spectrum assuming a simple constant bias model and infer bias factors of
b=1.3-1.8, with a statistical uncertainty of 15%, depending on the assumed
model for the redshift distribution of the dusty galaxies that are contributing
to the Herschel/SPIRE maps.Comment: 5 pages, 3 figures, to be submitted to ApJ
CMB Polarization B-mode Delensing with SPTpol and Herschel
We present a demonstration of delensing the observed cosmic microwave
background (CMB) B-mode polarization anisotropy. This process of reducing the
gravitational-lensing generated B-mode component will become increasingly
important for improving searches for the B modes produced by primordial
gravitational waves. In this work, we delens B-mode maps constructed from
multi-frequency SPTpol observations of a 90 deg patch of sky by subtracting
a B-mode template constructed from two inputs: SPTpol E-mode maps and a lensing
potential map estimated from the map of the
CIB. We find that our delensing procedure reduces the measured B-mode power
spectrum by 28% in the multipole range ; this is shown to be
consistent with expectations from theory and simulations and to be robust
against systematics. The null hypothesis of no delensing is rejected at . Furthermore, we build and use a suite of realistic simulations to
study the general properties of the delensing process and find that the
delensing efficiency achieved in this work is limited primarily by the noise in
the lensing potential map. We demonstrate the importance of including realistic
experimental non-idealities in the delensing forecasts used to inform
instrument and survey-strategy planning of upcoming lower-noise experiments,
such as CMB-S4.Comment: 17 pages, 10 figures. Comments are welcome
Detection of B-mode Polarization in the Cosmic Microwave Background with Data from the South Pole Telescope
Gravitational lensing of the cosmic microwave background generates a curl
pattern in the observed polarization. This "B-mode" signal provides a measure
of the projected mass distribution over the entire observable Universe and also
acts as a contaminant for the measurement of primordial gravity-wave signals.
In this Letter we present the first detection of gravitational lensing B modes,
using first-season data from the polarization-sensitive receiver on the South
Pole Telescope (SPTpol). We construct a template for the lensing B-mode signal
by combining E-mode polarization measured by SPTpol with estimates of the
lensing potential from a Herschel-SPIRE map of the cosmic infrared background.
We compare this template to the B modes measured directly by SPTpol, finding a
non-zero correlation at 7.7 sigma significance. The correlation has an
amplitude and scale-dependence consistent with theoretical expectations, is
robust with respect to analysis choices, and constitutes the first measurement
of a powerful cosmological observable.Comment: Two additional null tests, matches version published in PR
CfA4: Light Curves for 94 Type Ia Supernovae
We present multi-band optical photometry of 94 spectroscopically-confirmed
Type Ia supernovae (SN Ia) in the redshift range 0.0055 to 0.073, obtained
between 2006 and 2011. There are a total of 5522 light curve points. We show
that our natural system SN photometry has a precision of roughly 0.03 mag or
better in BVr'i', 0.06 mag in u', and 0.07 mag in U for points brighter than
17.5 mag and estimate that it has a systematic uncertainty of 0.014, 0.010,
0.012, 0.014, 0.046, and 0.073 mag in BVr'i'u'U, respectively. Comparisons of
our standard system photometry with published SN Ia light curves and comparison
stars reveal mean agreement across samples in the range of ~0.00-0.03 mag. We
discuss the recent measurements of our telescope-plus-detector throughput by
direct monochromatic illumination by Cramer et al (in prep.). This technique
measures the whole optical path through the telescope, auxiliary optics,
filters, and detector under the same conditions used to make SN measurements.
Extremely well-characterized natural-system passbands (both in wavelength and
over time) are crucial for the next generation of SN Ia photometry to reach the
0.01 mag accuracy level. The current sample of low-z SN Ia is now sufficiently
large to remove most of the statistical sampling error from the dark energy
error budget. But pursuing the dark-energy systematic errors by determining
highly-accurate detector passbands, combining optical and near-infrared (NIR)
photometry and spectra, using the nearby sample to illuminate the population
properties of SN Ia, and measuring the local departures from the Hubble flow
will benefit from larger, carefully measured nearby samples.Comment: 43 page
Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals
We conduct a genome-wide association study (GWAS) of educational attainment (EA) in a sample of ~3 million individuals and identify 3,952 approximately uncorrelated genome-wide-significant single-nucleotide polymorphisms (SNPs). A genome-wide polygenic predictor, or polygenic index (PGI), explains 12-16% of EA variance and contributes to risk prediction for ten diseases. Direct effects (i.e., controlling for parental PGIs) explain roughly half the PGI's magnitude of association with EA and other phenotypes. The correlation between mate-pair PGIs is far too large to be consistent with phenotypic assortment alone, implying additional assortment on PGI-associated factors. In an additional GWAS of dominance deviations from the additive model, we identify no genome-wide-significant SNPs, and a separate X-chromosome additive GWAS identifies 57
- …