225 research outputs found

    Comparing Competing Theories on the Causes of Mandate Perceptions

    Get PDF
    The discussion of presidential mandates is as certain as a presidential election itself. Journalists inevitably discuss whether the president-elect has a popular mandate. Because they see elections as too complex to allow the public to send a unitary signal, political scientists are more skeptical of mandates. Mandates, however, have received new attention by scholars asking whether perceptions of mandate arise and lead representatives to act as if voters sent a policy directive. Two explanations have emerged to account for why elected officials might react to such perceptions. One focuses on the President’s strategic decision to declare a mandate, the second on how members of Congress read signals of changing preferences in the electorate from their own election results. We test these competing views to see which more accurately explains how members of Congress act in support of a perceived mandate. The results indicate that members respond more to messages about changing preferences than to the president’s mandate declaration

    A CMB lensing mass map and its correlation with the cosmic infrared background

    Full text link
    We use a temperature map of the cosmic microwave background (CMB) obtained using the South Pole Telescope at 150 GHz to construct a map of the gravitational convergence to z ~ 1100, revealing the fluctuations in the projected mass density. This map shows individual features that are significant at the ~ 4 sigma level, providing the first image of CMB lensing convergence. We cross-correlate this map with Herschel/SPIRE maps covering 90 square degrees at wavelengths of 500, 350, and 250 microns. We show that these submillimeter-wavelength (submm) maps are strongly correlated with the lensing convergence map, with detection significances in each of the three submm bands ranging from 6.7 to 8.8 sigma. We fit the measurement of the cross power spectrum assuming a simple constant bias model and infer bias factors of b=1.3-1.8, with a statistical uncertainty of 15%, depending on the assumed model for the redshift distribution of the dusty galaxies that are contributing to the Herschel/SPIRE maps.Comment: 5 pages, 3 figures, to be submitted to ApJ

    CMB Polarization B-mode Delensing with SPTpol and Herschel

    Full text link
    We present a demonstration of delensing the observed cosmic microwave background (CMB) B-mode polarization anisotropy. This process of reducing the gravitational-lensing generated B-mode component will become increasingly important for improving searches for the B modes produced by primordial gravitational waves. In this work, we delens B-mode maps constructed from multi-frequency SPTpol observations of a 90 deg2^2 patch of sky by subtracting a B-mode template constructed from two inputs: SPTpol E-mode maps and a lensing potential map estimated from the Herschel\textit{Herschel} 500 μm500\,\mu m map of the CIB. We find that our delensing procedure reduces the measured B-mode power spectrum by 28% in the multipole range 300<ℓ<2300300 < \ell < 2300; this is shown to be consistent with expectations from theory and simulations and to be robust against systematics. The null hypothesis of no delensing is rejected at 6.9σ6.9 \sigma. Furthermore, we build and use a suite of realistic simulations to study the general properties of the delensing process and find that the delensing efficiency achieved in this work is limited primarily by the noise in the lensing potential map. We demonstrate the importance of including realistic experimental non-idealities in the delensing forecasts used to inform instrument and survey-strategy planning of upcoming lower-noise experiments, such as CMB-S4.Comment: 17 pages, 10 figures. Comments are welcome

    Detection of B-mode Polarization in the Cosmic Microwave Background with Data from the South Pole Telescope

    Get PDF
    Gravitational lensing of the cosmic microwave background generates a curl pattern in the observed polarization. This "B-mode" signal provides a measure of the projected mass distribution over the entire observable Universe and also acts as a contaminant for the measurement of primordial gravity-wave signals. In this Letter we present the first detection of gravitational lensing B modes, using first-season data from the polarization-sensitive receiver on the South Pole Telescope (SPTpol). We construct a template for the lensing B-mode signal by combining E-mode polarization measured by SPTpol with estimates of the lensing potential from a Herschel-SPIRE map of the cosmic infrared background. We compare this template to the B modes measured directly by SPTpol, finding a non-zero correlation at 7.7 sigma significance. The correlation has an amplitude and scale-dependence consistent with theoretical expectations, is robust with respect to analysis choices, and constitutes the first measurement of a powerful cosmological observable.Comment: Two additional null tests, matches version published in PR

    CfA4: Light Curves for 94 Type Ia Supernovae

    Full text link
    We present multi-band optical photometry of 94 spectroscopically-confirmed Type Ia supernovae (SN Ia) in the redshift range 0.0055 to 0.073, obtained between 2006 and 2011. There are a total of 5522 light curve points. We show that our natural system SN photometry has a precision of roughly 0.03 mag or better in BVr'i', 0.06 mag in u', and 0.07 mag in U for points brighter than 17.5 mag and estimate that it has a systematic uncertainty of 0.014, 0.010, 0.012, 0.014, 0.046, and 0.073 mag in BVr'i'u'U, respectively. Comparisons of our standard system photometry with published SN Ia light curves and comparison stars reveal mean agreement across samples in the range of ~0.00-0.03 mag. We discuss the recent measurements of our telescope-plus-detector throughput by direct monochromatic illumination by Cramer et al (in prep.). This technique measures the whole optical path through the telescope, auxiliary optics, filters, and detector under the same conditions used to make SN measurements. Extremely well-characterized natural-system passbands (both in wavelength and over time) are crucial for the next generation of SN Ia photometry to reach the 0.01 mag accuracy level. The current sample of low-z SN Ia is now sufficiently large to remove most of the statistical sampling error from the dark energy error budget. But pursuing the dark-energy systematic errors by determining highly-accurate detector passbands, combining optical and near-infrared (NIR) photometry and spectra, using the nearby sample to illuminate the population properties of SN Ia, and measuring the local departures from the Hubble flow will benefit from larger, carefully measured nearby samples.Comment: 43 page

    Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals

    Get PDF
    We conduct a genome-wide association study (GWAS) of educational attainment (EA) in a sample of ~3 million individuals and identify 3,952 approximately uncorrelated genome-wide-significant single-nucleotide polymorphisms (SNPs). A genome-wide polygenic predictor, or polygenic index (PGI), explains 12-16% of EA variance and contributes to risk prediction for ten diseases. Direct effects (i.e., controlling for parental PGIs) explain roughly half the PGI's magnitude of association with EA and other phenotypes. The correlation between mate-pair PGIs is far too large to be consistent with phenotypic assortment alone, implying additional assortment on PGI-associated factors. In an additional GWAS of dominance deviations from the additive model, we identify no genome-wide-significant SNPs, and a separate X-chromosome additive GWAS identifies 57
    • …
    corecore