73 research outputs found

    Semantically-Enhanced Online Configuration of Feedback Control Schemes

    Get PDF
    Recent progress toward the realization of the ``Internet of Things'' has improved the ability of physical and soft/cyber entities to operate effectively within large-scale, heterogeneous systems. It is important that such capacity be accompanied by feedback control capabilities sufficient to ensure that the overall systems behave according to their specifications and meet their functional objectives. To achieve this, such systems require new architectures that facilitate the online deployment, composition, interoperability, and scalability of control system components. Most current control systems lack scalability and interoperability because their design is based on a fixed configuration of specific components, with knowledge of their individual characteristics only implicitly passed through the design. This paper addresses the need for flexibility when replacing components or installing new components, which might occur when an existing component is upgraded or when a new application requires a new component, without the need to readjust or redesign the overall system. A semantically enhanced feedback control architecture is introduced for a class of systems, aimed at accommodating new components into a closed-loop control framework by exploiting the semantic inference capabilities of an ontology-based knowledge model. This architecture supports continuous operation of the control system, a crucial property for large-scale systems for which interruptions have negative impact on key performance metrics that may include human comfort and welfare or economy costs. A case-study example from the smart buildings domain is used to illustrate the proposed architecture and semantic inference mechanisms

    Exploring Semantic Mediation Techniques in Feedback Control Architectures

    Get PDF
    Modern control systems implementations, especially in large–scale systems, assume the interoperation of different types of sensors, actuators, controllers and software algorithms, being physical or cyber. In most cases, the scalability and interoperability of the control system are compromised by its design, which is based on a fixed configuration of specific components with certain knowledge of their specific characteristics. This work presents an innovative feedback control architecture framework, in which classical and modern feedback control techniques can be combined with domain knowledge (thematic, location and time) in order to enable the online plugging of components in a feedback control system and the subsequent reconfiguration and adaptation of the system

    Semantic Mediation in Smart Water Networks

    Get PDF
    Water Distribution Networks (WDN) are the infrastructures responsible for delivering drinking water to consumers. The effective monitoring and control of these systems is of vital importance since malfunction may significantly affect the health, safety, security and/or economic well-being of people. The advancements in coupling WDN with the ICT infrastructure, combined with the more recent introduction of smart sensing and actuation technologies, have enabled the enhancement of "Supervisory Control And Data Acquisition (SCADA)"-based applications. These applications in current water systems assume pre-defined configuration and characteristics of the involved components (sensors, actuators, controllers, etc.). This work explores how semantic mediation techniques may contribute to the online configuration of the monitoring and control architectures by exploiting and reasoning over the capabilities of deployed devices

    Semantically-enhanced Configurability in State Estimation Structures of Power Systems

    Get PDF
    The estimation of the states of an electric power system, that is, the magnitude and angle of the voltage at all buses, is a very critical input to many monitoring and control functions of power systems. The recently witnessed rapid deployment of synchronized measurement technology (SMT) in power systems, has led to research advancements in the state estimation technology that introduce the notion of hybrid state estimation. These techniques incorporate the synchrophasors provided by the Phasor Measurement Units (PMUs) in the state estimation process, thus improving the state estimation accuracy. However, both the traditional as well as the hybrid techniques, assume a pre-defined configuration and characteristics of the measurement devices. This work explores how semantic modelling and reasoning techniques may contribute to the online configuration of the state estimation architectures given the available measurement capabilities at each moment

    The Consequentialist Scale: Translation and empirical investigation in a Greek sample

    Get PDF
    The Consequentialist Scale (Robinson, 2012) [89] assesses the endorsement of consequentialist and deontological moral beliefs. This study empirically investigated the application of the Greek translation of the Consequentialist Scale in a sample of native Greek speakers. Specifically, 415 native Greek speakers completed the questionnaire. To uncover the underlying structure of the 10 items in the Consequentialist Scale, an Exploratory Factor Analysis (EFA) was conducted. The results revealed a three-factor solution, where the deontology factor exhibited the same structure as the original work by Robinson (2012) [89], while the original consequentialism factor split into two separate factors. Significant Pearson's r correlations were observed between age and responses to the Consequentialist Scale. Separate EFAs were conducted for two age groups based on a medial split: younger (36 years old or less) and older (more than 36 years old). Interestingly, the younger group exhibited a two-factor solution with the same structure as the original work, while the older group showed a three-factor solution. A hierarchical k-means cluster analysis revealed that the cluster of participants who scored higher in deontology compared to consequentialism primarily consisted of older participants, whereas the two other clusters comprised of younger participants exhibited the reverse pattern. Neither gender nor previous experience with philosophy significantly affected scores on the Consequentialist Scale. Overall, our study provides evidence that the Consequentialist Scale is suitable for use in the Greek population

    Investigation of the parameters affecting the thermosiphonic phenomenon in solar water heaters

    Get PDF
    Cyprus is currently the leading country in the world with respect to the application of solar water heaters for domestic applications, with more than 93% of the houses equipped with such a system. The great majority of these solar water heaters are of the thermosiphonic type. Thermosiphonic is a natural phenomenon where the flow of the solar heated water from the collector to the storage tank occurs from a small flow created due to the difference in density between hot and cold water. The main advantage of such systems is that they do not require a pump for circulating the water and circulation exists as long as there is sunshine. This reduces the maintenance requirements and the system is foolproof. In spite of the fact that extensive analyses of the performance of solar water heaters has been carried out by numerous researchers, almost all of them concerned forced circulation systems which use a circulating pump. Currently, the knowledge on the parameters affecting the ‘thermosiphonic phenomenon’ is rather poor while on an international level (ISO and CEN committees) there isn’t any standard to test thermosiphon solar collectors. The deeper understanding of the ‘thermosiphonic phenomenon’ and the identification of the key parameters affecting it, is the main aim of a research project currently in process in Cyprus. In this work the first preliminary results of the experimental procedure are presented. More specifically, a special test rig was set up and equipped with all sensors necessary to measure all parameters that are most likely to affect the ‘thermosiphonic phenomenon’. All tests were conducted according to ISO 9459- 2:1995(E). The system was able to operate in various weather and operating conditions and could accommodate the change of inclination of the collector. Initially, the solar collector was tested according to EN12975-2:2006 in order to determine the thermal performance at a flow and operation conditions specified by the standard. Subsequently, the efficiency of the collector operating thermosiphonically was calculated based on quasi-dynamic approach. Finally, a series of correlations were attempted using the data acquired when the collector is operating themosiphonically which are the following: (i) the temperature difference of the water at the outlet and the inlet of the collector (ΔΤ) with the solar global radiation, (ii) the water mass flow with the solar global radiation, (iii) the water mass flow with the temperature difference of the water at the outlet and the inlet of the collector (ΔΤ). The results of the data analysis showed that these parameters are very well correlated between them since the coefficient of determination (R2) is over 0.91 in all cases

    Experimental investigation of the thermosiphonic phenomenon in domestic solar water heaters

    Get PDF
    The deeper understanding of the ‘thermosiphonic phenomenon’ and the identification of the key parameters affecting it, is the main aim of a research project currently in process in Cyprus. In this work a review of the existing standards and scientific knowledge concerning domestic solar water heaters is presented. The first preliminary results of the experimental investigation of the ‘thermosiphonic phenomenon’ in domestic solar water heaters are also presented. For this purpose a special test rig was set up and equipped with all sensors necessary to measure all parameters that are most likely to affect the ‘thermosiphonic phenomenon’. All tests were conducted according to ISO 9459- 2:1995(E). At first, the solar collector was tested according to EN12975-2:2006 in order to determine the thermal performance characteristics at a flow and operation conditions specified by the standard. Consequently, the efficiency of the collector operating thermosiphonically was calculated based on quasi-dynamic approach. Finally, a series of correlations were attempted using the data acquired when the collector is operating themosiphonically which are the following: (i) the temperature difference of the water at the outlet and the inlet of the collector (ΔΤ) with the solar global radiation, (ii) the water mass flow with the solar global radiation, (iii) the water mass flow with the temperature difference of the water at the outlet and the inlet of the collector (ΔΤ). The results of the data analysis showed that these parameters are very well correlated between them since the coefficient of determination (R2) is over 0.91 in all cases
    corecore