
IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, MONTH YYYY 1

Semantically-Enhanced Online Configuration of
Feedback Control Schemes

Georgios M. Milis, Christos G. Panayiotou and Marios M. Polycarpou, Fellow, IEEE

Abstract—Recent progress towards the realization of the
“Internet of Things” has improved the ability of physical
and soft/cyber entities to operate effectively within large-scale,
heterogeneous systems. It is important that such capacity be
accompanied by feedback control capabilities sufficient to ensure
that the overall systems behave according to their specifications
and meet their functional objectives. To achieve this, such systems
require new architectures that facilitate the online deployment,
composition, interoperability and scalability of control system
components. Most current control systems lack scalability and
interoperability because their design is based on a fixed configu-
ration of specific components, with knowledge of their individual
characteristics only implicitly passed through the design. This
work addresses the need for flexibility when replacing compo-
nents or installing new components, which might occur when
an existing component is upgraded or when a new application
requires a new component, without the need to readjust or
redesign the overall system. A semantically-enhanced feedback
control architecture is introduced for a class of systems, aimed
at accommodating new components into a closed-loop control
framework by exploiting the semantic inference capabilities of
an ontology-based knowledge model. This architecture supports
continuous operation of the control system, a crucial property for
large-scale systems for which interruptions have negative impact
on key performance metrics that may include human comfort and
welfare or economy costs. A case-study example from the smart
buildings domain is used to illustrate the proposed architecture
and semantic inference mechanisms.

Index Terms—cyber-physical systems, feedback control, inter-
net of things, semantic composition, semantic knowledge models.

WE currently live in the “smart era” where people
and machines intelligently interact in work and social

ecosystems [1]. This interaction is facilitated by a variety
of smart machines, from small personal devices to hardware
and software-equipped smart buildings [2], [3], to even larger
and more complex systems such as electric power grids [4].
The high penetration of smart portable and embedded devices
connected to networks, suggest a future where machines will
interact with each other and the environment, in a context-
aware framework [5]. Thus, new sensing, actuation and control
capabilities can be created.

In this context, consider the case of a smart building,
equipped with various sensors, actuators and controllers, de-
signed to maintain the comfort and safety of the inhabitants,
while reducing operating costs. A smart building may consist

The authors are with the KIOS Research Center for Intelligent Sys-
tems and Networks, Department of Electrical and Computer Engi-
neering, University of Cyprus, {milis.georgios, christosp,
mpolycar}@ucy.ac.cy

This work is partially funded by the European Research Council (ERC)
under the project “Fault-Adaptive Monitoring and Control of Complex Dis-
tributed Dynamical Systems”.

of various sub-systems that control the lighting, the temper-
ature and the humidity, the condition of the air, fire alarm
systems, sprinkler systems and many more. In most cases, the
design of these systems is based on a fixed configuration of
specific components, with certain knowledge of their specific
characteristics. For example, specific temperature sensors and
heaters may be part of the control operation of a heating,
ventilation and air-conditioning (HVAC) system, but in general
any other system in the same building ignores their existence.
This causes lack of reconfigurability and interoperability for
the control components, thus considerably limiting the poten-
tial capabilities and lifetime of the overall control system.
A truly smart control system should be able to respond to
an evolving environment by reconfiguring itself online and
effectively utilizing the available components so that the tech-
nical and economic control objectives are not compromised.
For instance, the control system may utilize an independent
electric heater if it becomes aware that, at a certain time, the
HVAC requires that actuation capacity to effectively control
the temperature. The emerging maturity of the Internet of
Things (IoT) paradigm and the subsequent proliferation of
embedded systems with wireless connectivity has made it
possible to meet this requirement.

The main contribution of this work is the design of an
innovative semantically-enhanced architecture for online con-
figuration of feedback control schemes. The proposed archi-
tecture can be adopted in a class of dynamic systems and
it is general enough to be applicable to various application
domains, though in this paper emphasis is given to smart build-
ing applications. We present a mechanism, which allows the
systematic modelling of available expert knowledge about the
domain in which the control system operates, as well as about
the control system design variables. The mechanism enables
the on-line selection of components and can be exploited for
automatic (semantically viable) closed-loops’ reconfiguration
when changes are detected in the pool of components.

The article is organized as follows. Section I offers insights
into related work. Section II formulates the problem being
considered, with reference to the introduced architecture.
Then, Section III discusses the relevant semantic (knowledge)
modelling. This is followed by Section IV that presents
the respective semantic models of individual control system
components, as well as the pairwise composition models in
a feedback loop orchestration. Section V follows, presenting
specific composition example cases from the buildings do-
main. Finally, Section VI concludes the article and discusses
future directions.

IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, MONTH YYYY 2

I. RELATED WORK

A lot of work has been undertaken to date by the control
community towards designing control algorithms with online
adaptation capabilities that aim to facilitate the flexibility
of the control system to accommodate system uncertainties
and/or time variations. For instance, approaches to designing
fault-tolerant control systems are presented in [6], while the
textbooks [7] and [8] comprise comprehensive information
sources on approaches to design adaptive controllers. Combin-
ing adaptation capabilities with online learning of unknown
system dynamics, has been also addressed in research; the
textbook [9] discusses general methodologies for design-
ing adaptive approximation-based control systems. Adaptive
approximation-based techniques have been utilised also re-
cently, using neural networks [10], as well as fuzzy logic [11],
[12] in designing controllers and/or approximators for certain
classes of nonlinear systems with unknown parameters. The
authors in [13], [14] and more recently in [15], have worked
towards adapting to and accommodating online changes in
the system’s dynamics and order (e.g., when new components
are plugged in a closed-loop system), for linear systems. A
more recent approach to the control reconfiguration and fault
detection in non-linear systems can be seen in [16].

The work discussed above, deals with the design of con-
trollers with pre-defined structure, which however pose the
required adaptation capabilities so as to maintain satisfactory
performance in the presence of certain system uncertainty and
changes. Nevertheless, there are cases where the design of a
single-structure controller is not practical or it cannot satisfy
the control objectives. Such cases are addressed by another
research area, the “variable structure control” [17]. This area
assumes that the control system switches among several pre-
defined control structures that take over when certain criteria
are met (e.g., when a regulated state slides to the bounds
of specific areas in the state-space). The switching between
control structures is either based on deterministic criteria or
even follows a stochastic process [18]. This type of systems
are a special case of “hybrid dynamical systems” that have
been studied extensively in the literature [19], also in terms of
their reconfiguration strategies for active fault accommodation
[20].

An essentially complementary approach from a different
perspective, is the design of modular architectures. An early
effort towards introducing the need for a modular architecture
for the control system design and the concept of structuring
the data exchanged based on their basic semantic description,
has been discussed in [21]. More recent efforts [22], though
not focusing specifically on the control problem, address the
modelling of cyber-physical systems as collections of services
offered by specific physical devices and cyber tools within
certain time and domain context. These services are then
invoked, based on their standard descriptions for online com-
position of services, to perform specific tasks. Moreover, the
authors in [23] are taking advantage of the cloud computing
paradigm to offer middleware solutions that allow abstraction
of services of physical units for online invocation. An equally
interesting approach is presented in [24], [25] where a Building

Application Stack (BAS) and a Building Operating System
Services (BOSS) architecture are introduced, allowing the
development of portable control applications for buildings,
decoupled from hardware and building specificity. That work
deals with the interoperability of building components, imple-
menting metadata models and fuzzy queries for abstraction.

In order to deal with the interoperability in the modular
(component-based) architectures discussed above, the research
community investigated the use of semantic knowledge mod-
els. The explicit incorporation of semantics in the control
systems design has been proposed in [26]. The semantic
knowledge models are considered in that article as an arti-
ficial intelligence tool, required to be used for the modelling
of knowledge about plants, control system components and
control goals. An architecture is proposed, which allows the
control system to reason upon the modelled knowledge and
select appropriate control systems from a pre-existing pool.
The concept of expert knowledge modelling in control systems
is also used in [27], mainly focusing on the semantic validation
of simulation software. A more system theoretic approach
to presenting the concepts of semantic control systems can
be found in [28], which discussed the notion of semantic
rules as mappings between physical phenomena and explained
that control is in general rule-following, be it functional
or semantic rules. Furthermore, concrete examples of using
semantic knowledge models in the smart buildings domain,
are observed in the literature. For instance, the “DOGont”
ontology [29] deals with the current issues of vendors’ and
technologies’ heterogeneity in domotic environments. Also,
the authors in [30] describe an ontology-based expert system
that is able to transparently control the home automation
processes by learning from the human users’ behaviour.

Our work is complimentary to what discussed above and
advances the state of art by combining existing tools from
different areas and offering explicit solutions to identified gaps.
We address in general a variable structure control problem,
since we assume that there is no pre-designed single controller
that poses all required adaptation capabilities to learn and
accommodate the changes (e.g., in case of faults) in the
controlled plant and/or the control system components. We
consider a plug-and-play capability in our proposed solution,
however, not in terms of built-in adaptation capability to
changes due to newly plugged components; we implement a
mechanism that enables the control system to switch online
between different configurations. Unlike typical switching sys-
tems where the transition happens when the system state enters
a pre-defined region of the state-space, our switching decision
is explicitly made and enforced through a discrete-state logic-
based system. The explicit design of this mechanism is a
key contribution. This mechanism assumes that the available
control modes (configurations) are not defined in advance; they
are composed online using components from an evolving pool
of control system components, able to interoperate in a modu-
lar architecture but without hard-coded interfaces. At discrete
events, the logic-based system exploits modelled knowledge
and subsequent (standards’ based) semantic characterisations
of components’ interfaces, as well as inductive inference rules
to produce the switching signal. These are further clarified in

IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, MONTH YYYY 3

the sequel.

II. PROBLEM FORMULATION

Large-scale complex systems typically consist of a large
number of components and subsystems and they evolve over
time as new technology becomes available, leading to the
addition of new or replacement of existing components. For
example, in the context of a smart building, new sensors (e.g.,
occupancy sensors or CO and CO2 sensors) or new actuators
(e.g., a heater or a humidifier) may be plugged-in and become
available. In this case, it is desirable that the building control
system reconfigures itself and integrates the new components
in the overall control scheme, so as to ensure continuous
operation and satisfaction of control specifications (e.g., user
safety and comfort).

In order to achieve the above objectives, a cognitive agent,
denoted as Σ, is proposed. This agent is responsible for
maintaining an expert knowledge base, performing logical
reasoning tasks, making decisions and configuring various
components such that the operation objectives are met. The
agent Σ first detects and identifies the changes in the avail-
ability of components. With the emerging maturity of the “In-
ternet of Things”, this requirement is addressed by established
message formatting standards and communication protocols.
Subsequently, Σ should become aware of the characteristics
and capabilities of the new components. This is exactly the
emphasis of this work, proposing the use of ontological knowl-
edge models and semantic characterisation and reasoning
techniques [31], [32]. Thus, each component can be annotated
with certain “tags” that describe its characteristics and capa-
bilities. Once this information is received by Σ, it is integrated
with the existing knowledge available about the overall system,
together with information that can be obtained from experts,
normal users and/or the Internet. The new knowledge is then
utilized to reconfigure the existing feedback control scheme,
considering currently available components.

The general architecture is shown in Fig. 1, where I ∈
{0, 1, 2, ...} is the index of the possible feedback control
scheme configurations. In the proposed architecture, a control
scheme for a given “Plant” is considered (e.g., a room of a
larger building, characterised by certain state variables like
temperature, humidity, lighting, air quality, etc.) that need
to be controlled to satisfy certain control objectives, e.g.,
maintain safe and comfortable conditions for the users. Other
example of a “plant” can be a window or door characterised
by its opening state. The plant’s state is monitored by a set
of sensors S(I), e.g., thermistors, occupancy sensors, limit
switches, smoke detectors and so on. Furthermore, a set of
actuators A(I) is considered, able to act on the plant and affect
its state. For instance, a heating element may be used to adjust
the temperature, a lamp to adjust the lighting, a motor to open
a window.

In practice, the actuators are typically driven by automatic
control schemes which take measurements from sensors and
compare them to reference signals in order to generate the
control signals to be fed to the actuators. The control algo-
rithms can range in complexity from a simple ON/OFF control

(I)A (I)S

(I)

yF

Plant

(I)K

ΣCyber

tools/services

Event-driven communication

Time-driven communication

… …

…

(I)

uF

… …

mΛ Λ

Figure 1. System Architecture for the configuration I . The large boxes
indicate the set of plants P(I) that are controlled, the set of used sensors
S(I), the set of used actuators A(I), the set of used controllers K(I) and the
sets of used transformation functions F(I)

y and F(I)
u . Small boxes indicate

the individual components in these sets. Switches indicate the selection
possibility at each different configuration I . The time-driven communication
concerns vectors of signals each time with appropriate dimension. The
event-driven communication comprises cyber two-way communication with
components and it also transfers the selection decisions to switches. Note
that communication with the plant is one-way since any knowledge about it,
comes from human or cyber sources)

scheme to PID control to adaptive control algorithms, etc. In
certain cases, the signal produced by a sensor may not be
compatible with that which is required by a controller, or the
signal produced by a controller may not be compatible with
the signal required by an actuator. This may be particularly
relevant when a new component is added, e.g., when a new
temperature sensor measuring in degrees Fahrenheit is added
to a closed-loop control system configured to use degrees
Celsius. In such case, the sensor signal can be processed
through a transformation function, that is an element of a set
of functions denoted by F (I)

y , before fed to the controller(s)
from the set K(I). The control signal can also be processed
through another set of transformation functions denoted by
F (I)

u before fed to the actuators. Typically, the control of
a plant, given certain control objectives, may be comprised
of several feedback loops as indicated in Fig. 1 for the
configuration I .

Expert knowledge about the available components is given
to the cognitive agent Σ and is stored in its semantic database
Λ. This database may also contain additional information
obtained from users and the Internet, as well as new implicit
knowledge created by applying logical inference mechanisms
on pre-existing knowledge. To facilitate the latter, the agent
Σ has access to a second database, Λm, which contains
semantic rules that model experts’ reasoning through semantic
mappings and support the inference mechanism. Basic defini-
tions about the notion of these rules can be found in [28].

IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, MONTH YYYY 4

Every time a component is introduced or removed, agent Σ
becomes aware of the change. In the case of introducing a
new component, Σ obtains information about its functionality,
properties and characteristics (through semantic annotations),
as well and adds it to its semantic database. The information
may be coming from the component itself, through appropriate
communication protocols and/or from the users or discovered
via the Internet. The communication of agent Σ with all
components is event-driven and is indicated in Fig. 1 by orange
lines. At the occurrence of every relevant event, where new
knowledge about components becomes available, Σ guides
the transition from configuration I to I + 1 by selecting the
appropriate sensors, actuators, controllers and transformation
functions and setting their relevant parameters.

In summary, in order to perform the change in the con-
figuration from I to I + 1, the tasks of agent Σ are broken
down as follows: Task 1: Understand the context/environment
where the entire system operates; Task 2: Detect and identify
the available components; Task 3: Acquire information about
the functionality, properties and characteristics of each compo-
nent; Task 4: Turn the available information into knowledge
that can be used to determine what components to use in order
to synthesize the necessary feedback-control loops; Task 5:
Select the appropriate components and set their parameters
such that certain performance objectives are met.

In the scope of this work, for the purpose of illustrating the
proposed architecture in an application domain instead of in an
abstract formulation, it is assumed that the context is a smart
building with a floor-plan already available. Furthermore, it
is assumed that each component has wireless connectivity
and implements some node discovery and communication
protocol. Thus, this work considers Task 1 and Task 2 solved
a-priori, since information about the environment is assumed
to have been imported in advance, while detection of new
components is assumed solved by using standard network
communication protocols. The emphasis is on Task 3 and
Task 4. Task 3 is addressed through the semantic modelling
and characterization of components described in Sections
III and IV. Semantic characterizations are then exploited to
solve Task 4 as presented in Section V. Finally, exploring
additional automation methods to address Task 5 is for future
investigation, while in this work some static solutions and
assumptions are adopted.

III. KNOWLEDGE MODEL

The reader is taken through an illustrative scenario aiming at
clarifying the way the semantic database is built and how the
semantic inference is performed over the stored knowledge-
facts to implement the decision mechanism for the online
composition of the feedback-loop scheme.

Consider the scenario of an office as in Fig. 2, where a
digital sensor device (s1) is deployed, measuring the tem-
perature of the office (T1) in degrees Celsius. The office is
also equipped with a heating device (a1) which introduces
heat to the office at some energy rate in kW . In addition,
a controller k1 is deployed to regulate the temperature of the
office by controlling the operation of the actuator. There is also

a window on the east wall of the office, through which energy
losses (Eloss) can potentially appear, however, it is initially
considered fully closed and made of material with zero heat
transfer coefficient.

Figure 2. An open-plan office with inner temperature T1, ambient temperature
Ta, a deployed temperature sensor s1, one heating actuator a1 and a
temperature controller k1

Considering the office with the dynamics of its temperature
state, we describe next the “things” that this plant contains.
There is one temperature sensing device, one heating actuator,
one controller, as well as the physical properties “temperature”
and “energy”, the measurement units “Celsius” and “kW”,
as well as the locations “office” and “ambient”. All these
are linguistic terms used by humans to refer either to cyber-
physical entities or other types of entities and real world
phenomena and concepts. From a knowledge perspective, any
plant can be considered as a set of “things” (knowledge
objects), defined as follows:

Definition 1. Things: T = {ti|i = 1, · · · , nT } is the finite set
of all “things” (linguistic terms) which an expert would use as
a convention, to describe what exists in a subject plant. (The
terms “individuals” and “instances” are also used to refer to
these “things”, in the ontological engineering domain.)

The “things” are not all of the same type. The type of each
“thing” is an important part of the knowledge which experts
assume in order to share the same meaning. For instance,
one would not be able to understand the description without
knowing that the linguistic term “Celsius” refers to a unit
of measurement, while the linguistic term “office” denotes a
location. Therefore, a convention about the types of “things”
is necessary and defined as follows:

Definition 2. Classes: Ω = {ωi|i = 1, · · · , nΩ, ωi ⊆ T } is
the set of all types/classes to which the “things” belong. Note
that each element of Ω is a subset of the set T .

Elements in Ω could be, for instance, the set of sensors (S),
the set of actuators (A), the set of controllers (K), the set of
locations (L), the set of physical properties (Q), as well as
the set of measurement units (M). Since this work is dealing
with online compose-ability of control system schemes, these
are further described in terms of their “inputs” and “outputs”,
therefore, two additional classes of “things” are defined for
convenience: Set U ∈ Ω represents all inputs of components,
while set Y ∈ Ω represents all outputs of components. The use
of these two sets will be clarified in Section IV. In general,
each “thing” may belong to more than one classes, however,
for simplicity it is considered in this work that each one

IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, MONTH YYYY 5

belongs to only one class.
Further to the classes of “things”, the full understanding of

the meaning is facilitated by the (semantic) relations between
them. That is, “Celsius” (m1 ∈M) is a measurement unit of
“temperature” (q1 ∈ Q), while s1 ∈ S is a “sensor” that
measures “temperature”. Such logical relations, comprise a
third convention assumed by experts when sharing knowledge.
In general, relations comprise mappings between “things” of
one class to “things” of another and their definition is given
below:

Definition 3. Relation-graph: G(Vo,Vd, E
(Vo,Vd)
n) defines a

non-balanced graph with vertices being the elements of the
sets Vo,Vd ∈ Ω and edges being the elements of the set
E

(Vo,Vd)
n = {(voi , vdj)|voi ∈ Vo, vdj ∈ Vd, i ∈ {1, ..., nVo}, j ∈
{1, ..., nVd}}, which represent the arcs connecting elements of
the origin set Vo to elements of the destination set Vd. (The
term “properties” and “relations” are used in the ontological
engineering domain).

Typically, a “Relation-graph” is bipartite, i.e., the sets Vo

and Vd comprise distinct classes of “things”. However, in the
case when the “Relation-graph” describes mapping between
“things” of the same class (e.g., two distinct locations), then
the origin and destination sets of vertices converge to one.
Furthermore, in the case where multiple relations are required
and defined between the same pair of classes, a subscript
n = 1, 2, · · · is used with the set of edges E in the above
definitions, in order to differentiate between the relations.

Fig. 3 shows some example “Relation-graphs” that represent
various relations between “things”. The nodes of the graphs
represent “things” while their classes are shown with dashed-
line rectangle containers. An edge that connects two “things”
represents the relation that exists between them. The shown
edges represent six different “Relation-graphs”, however, for
readability purposes, four of them are highlighted with differ-
ent colours.

Multi-edge paths between “things” represent “composite”
relations, i.e., relations not explicitly defined in advance.
For example, the bipartite graph G(Y,Q, E(Y,Q)) can be
considered as formed with vertices from the sets Y and Q
and edges the paths of length 2 from nodes in Y to nodes in
Q (e.g., the path (y,m, q). This is a relation that is derived
from the composition of two other relations.

Since the relations are defined from specific origin class to
specific destination class, the respective graphs are directed in
general. However, in most cases the converse relation also ex-
ists, which results in bidirectional (or non-directional) graphs.
For instance, considering the illustrative example introduced
earlier, saying that sensor s1 is “located in” l1 = office, would
have the same meaning as saying l1 “contains” sensor s1.
Wherever the converse of relations utilized in this work are
meaningful, the edges are shown as non-directional.

Several relations can be defined between different classes of
“things”. The union of all resulting “Relation-graphs” defines
a super-graph, which in combination with the “things” and
their “classes” comprises the semantic database Λ introduced
earlier.

Figure 3. Representation of relation graphs: The graph G(S,L, E(S,L)) is
highlighted with light blue colour, the graph G(U ,Q, E(U,Q)) is highlighted
with light green, the graph G(Y,M, E(Y,M)) is highlighted with light
orange and the graph G(M,Q, E(M,Q)) is highlighted with light grey.
The “prime” superscript is used to illustrate the potential of having multiple
“things” in each class.

IV. SEMANTIC MODELS OF COMPONENTS IN A FEEDBACK
CONTROL SCHEME

The knowledge (semantics) about the components of a
feedback control scheme, is encoded in a layered hierarchical
view. To determine this view, the input-output nature of all
components is exploited. The following four layers are used:
i) the “Scheme Components” layer which contains the “things”
that represent the actual implementations of control-related
components (i.e., plant, sensor, controller, actuator), ii) the
“Inputs-Outputs-Locations” layer which contains all inputs
and outputs of every component, as well as the “Locations”
sub-layer that encodes the physical location associated with
each component directly or indirectly, iii) the “Thematic
Knowledge” layer which contains “things” encoding all other
domain specific knowledge (physical properties and measure-
ment units in this work). This is used to characterise the
components and subsequently their inputs and outputs, and
iv) the “Functions” layer which hosts “things” representing
any type of signal processing functions that, e.g., transform
one measurement unit to another.

In order to introduce and help clarify the semantic compose-
ability of feedback control schemes, the semantic models of
components are first graphically introduced in the following
subsection. Additional emphasis is given to the “Locations”
sub-layer, since locations comprise a key property in identify-
ing the cyber-physical components that are more appropriate
to be connected together.

A. Semantic models of components

1) Plant: A core type of component in a control scheme
is the “plant”. In general, a plant is a component described
by the dynamics of a certain set of state-variables. These dy-
namics are affected through input-variables (controlled and/or
uncontrolled) and the effect is measured via certain output-
variables (measurable functions of state-variables and/or pa-
rameters) through a certain transfer function. The controlled
input-variables are computed by a controller and produced
by actuators, while the output-variables can be measured by
sensors.

IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, MONTH YYYY 6

Figure 4. The semantic model of a certain “plant” p, comprising a tree with
one input-branch (through a certain input u), one output-branch (through a
certain output y) and one location-branch (through a certain location l).

Figure 5. The semantic model of a certain “sensor” s, comprising a tree with
one input-branch (through a certain input u), one output-branch (through a
certain output y) and one location-branch (through a certain location l).

To simplify the presentation of semantic modelling for
feedback control schemes, this work considers plants with
one input-variable, which is mapped to an output-variable and
is associated with a certain location. This is represented by
the snapshot of the semantic database shown in Fig. 4. In
general, multiple input-variables and output-variables can be
considered, simply by introducing more nodes of class U and
Y , respectively. The semantic model of a plant consists of a
tree that has as root the plant node. For single-input, single-
output (SISO) plants, the tree has three branches, the “input-
branch” (marked by triple purple edges) the “output-branch”
(marked by double green edges) and the “location-branch”
(marked by single red edges). The input branch identifies
the input-variable to the plant, the output branch identifies
the output-variable, while the location branch identifies the
location associated with the plant. In the figure, nodes q and
q′ are referred to as the “input-branch-leaf-node” and “output-
branch-leaf-node” respectively, while the location node l is
referred to as the “location-branch-leaf-node” of the plant
model tree (all leaf nodes are filled with light orange diagonal
pattern). For example, let the plant (p = p1) be the office
of Fig. 2 with its temperature dynamics. This has a single
input and a single output. The output y may represent the
measurable office temperature and the input u may represent
the heat introduced in the office. The plant is also associated
with the location l = l1 = office.

2) Sensor: Adopting the same input-output view of com-
ponents, a sensor can be viewed as a component that receives
as input some physical property and produces as output a
signal or a time series measured in some measurement units.
Fig. 5 illustrates the semantic model of a sensor s. Similarly
to the “plant” the semantic model tree associated with the
sensor has “thing” s as a root node and three branches:
the input-branch with the physical property that the sensor
measures as an input-branch-leaf-node q, the output-branch

with output-branch-leaf-node being the measurement unit m
produced by the sensor and the location-branch with l, the
location where the sensor is installed, as the location-branch-
leaf-node. For example, the semantic model of the temperature
sensor in the office has its input associated with the physical
property q = q1 = temperature, its output associated with the
measurement unit m = m1 = Celsius, while the device is
located in the office (l = l1 = office).

In general, each measurement unit is always associated with
a physical property, therefore there is also a formed “Relation-
graph” that involves objects of type physical property and
objects of type measurement unit. The edges of this graph are
indicated by gray line in Fig. 5, since they are not participating
in the semantic model of the sensor itself.

3) Actuator: An actuator is a device that receives an input
command or an input signal by a controller and produces an
output signal that affects a physical property. For example,
a heater, depending on its capabilities, may receive an input
command “0 or 1” to simply turn on or off or in the range
“0, · · · , 100” and produce a signal in kW , representing the
energy in the form of heat. The semantic model of the actuator
is not represented graphically, however, it is very similar to the
model of a sensor. Its input-branch has a leaf node m which
characterizes the input signal that the actuator can receive,
the output-branch has as leaf node the measurement unit m′

that characterises the output signal produced and the location-
branch has as leaf node the location where the actuator is
installed l.

4) Controller: The controller is also viewed as an input-
output component, where the time series input is usually a
signal produced by a sensor and generates an output command
or an output signal, fed to the actuator. The semantic model
of a controller is shown in Fig. 6.

The controller “thing” k is the root node and there is
one input- and one output-branch, as well as a location-
branch. The input corresponds to a signal coming e.g., from

IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, MONTH YYYY 7

Figure 6. The semantic model of a certain “controller” k, comprising a tree
with one input-branch (through a certain input u), one output-branch (through
a certain output y) and one location-branch (through a certain location l.

a sensor output, thus an input-branch-leaf-node m of type
measurement unit is considered. The output corresponds to a
signal/command to be given to an actuator, therefore another
measurement unit m′ is considered as the output-branch-leaf-
node. The controller component is assumed to be a software,
with no location property of its own. However, the controller
is typically considered in relation with a specific plant (either
due to its design or due to its potential deployment) and as
such it inherits the location properties associated with the plant
p. This results in the use of the location-branch-leaf-node l.
For instance, the model of plant p = p1 discussed earlier,
already defines the office as its associated location and this
will be inherited by any controller adopted in the feedback
control scheme, giving l = l1 = office. For completeness, it
is noted that beyond the time series’ inputs, controllers may
have additional inputs for re-configurable parameters, as well
as special inputs for reference signals. The values for these
“parameter-inputs” and reference signals may be measured by
installed sensing devices or given (updated) by humans and/or
third party (Internet) services.

For the purposes of this work, a small set of simple
controllers is considered, which are introduced in the sequel.
Incorporating more advanced controllers with different criteria
is also possible, and in fact, this is one of the main advantages
of the proposed methodology and architecture. It is also em-
phasised that the instantiations of the semantic models of the
components can be either imported manually or retrieved from
pre-defined Internet sources hosting the structured information
in the form of “semantic drivers” of components (e.g., during
design of buildings). In essence, what is achieved by the
proposed modelling, is the encoding of the required knowl-
edge in machine readable format. Assuming a repository of
given (cyber and/or physical) components with their semantic
models, the objective is for the agent Σ to be able to choose a
subset of them and ensure viable compositions of feedback

control schemes that also meet the pre-defined application
and control objectives. The compositions (connections) of the
components are discussed in the next sub-section.

The semantic database developed and used in this work
for the presentation of the concept, has been implemented as
a lightweight, application-independent and easily manageable
OWL/RDF ontology [33], that is, a standard format (XML-
like text) representing knowledge facts in the form of triplets
〈 subject - property - object 〉. The developed semantic
database allows the incorporation of existing standard ontology
frameworks that allow semantic composition of services/-
components, e.g., OWL-S, [34], or frameworks for semantic
annotation of RESTfull services [35]. It may also be combined
with ontologies dedicated for sensor annotations such as the
“SSN” by the W3C Semantic Sensor Network Incubator
Group (SSN-XG) [36] and the “SensorML” standard [37] by
the Open Geospatial Consortium (OGC), as well as other
domain specific ontologies (e.g., DOGont, [29] in the smart
buildings context), so as to serve a wider range of intelligent
applications.

B. Semantic composition of components

The semantic composition of the components, first of all
considers the classes (types) of the components and their
typical role in the closed-loop scheme as indicated in Fig.
1. That is, a sensor will use as input a certain physical signal
of the plant, a plant’s (controlled) input will be produced by a
relevant actuator and so on. Second, the composition considers
the “semantic matching” of the components, that is, the output-
input matching for consecutive pairs of components, based on
their semantic models. In general, the existence of a path from
one “thing” (node) to another when traversing the semantic
database (super-graph Λ), indicates a semantic relation for the
two “things”. A human expert would identify the useful paths
(relations) that should exist in order to form a meaningful
connection between an output of one component to the input
of another. This cognitive process of the human expert, needs
to be codified in “semantic rules” [28], in order to enable
the agent Σ to reason upon the semantic database and infer
the meaningful connections. The database of available rules is
denoted as Λm. At this stage in our work we do not attempt
to present the rules in a formal language; instead, we use the
graphical representation of the semantic database to describe
the rules, as presented in the sequel.

The “semantic matching” is essentially exploited on an
output-input basis and is achieved if and only if there are
meaningful relation paths from the output-branch-leaf-nodes
of one component to the input-branch-leaf-nodes of the other
component and, in addition, there is a meaningful relation
path between the location-branch-leaf-nodes of the two com-
ponents through the existing relation graphs that connect
different locations in the semantic database. Possible relations
between physical properties and measurement units (including
composite relations) can be utilized, while for the location
matchings, relations between location nodes may be utilized
as demonstrated next.

IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, MONTH YYYY 8

1) Location relations: Given an overall system (e.g., a
building), a number of relative locations and the relations
between these locations may be introduced. For example, a
building is located in some region and it consists of several
rooms. Within each room, several sub-locations are identified.
Then, one relation may represent that a location “is part of”
another location while its inverse relation, i.e., a location
“contains” another location is also defined. This relation is rep-
resented by G(L,L, E(L,L)

1), using the notation of “Definition
3”. Another relation is that a location “is adjacent to” some
other location which is also bi-directional and is represented by
G(L,L, E(L,L)

2). Other relations between the location objects
may also be defined as needed. Location-relations comprise
a very important property of cyber-physical components, as
their operation is often highly associated with their spatial
properties.

2) Actuator-Plant-Sensor Matching: The first task of the
agent Σ is to find the actuators able to affect the inputs of
the plants that require control, as well as the sensors that can
actually measure the outputs and other required parameters.
The actuator-plant composition is shown in Fig. 7. It can be
seen that the matches are shown by formed loops, while the
leaf-nodes that participate in the loops are filled with orange
colour instead of the diagonal pattern (nodes q′, m′ and l
here) and edges that participate in the paths to the leaf nodes
are also marked with orange dashed lines. Finally, transparent
orange dashed lines start from the virtual edges and end on an
AND gate that virtually controls the switch, meaning that the
switch only closes if all candidate matches are confirmed. All
other graph elements that do not have any role in the semantic
matching, are illustrated with thin grey lines.

The plant-sensor composition is not shown, however, it is
very similar to the actuator-plant composition discussed ear-
lier. Note that if the agent Σ cannot find a sensor that directly
matches the location of the plant through the G(L,L, E(L,L)

1)
relation-graph, it may explore other options, e.g., find a sensor
in another location associated with the plant’s location through
a path of the “is adjacent to” relation graph (G(L,L, E(L,L)

2).
Such sensor will be used depending on the specifications of
the considered controllers, e.g., considering whether there is
an open physical air-flow path between the two locations.

3) Controller matching: Once the agent Σ has found ap-
propriate actuators and sensors, it is required to identify an
appropriate controller. In this case, the matching is confirmed
if the input-branch-leaf-node of the controller’s semantic
model is the same as (or is connected through a path of the
knowledge model with) the output-branch-leaf-node of the
sensor’s semantic model and the location-branch-leaf-nodes
of the models of the two components are either the same
or they are connected through appropriate location-graphs. In
the example of this work, the sensor output, as well as the
controller’s input represent signals in some measurement units
m ∈M. Detailed presentation of this composition, as well as
the controller-actuator composition are omitted, as they can be
derived from understanding the previous models.

It has been mentioned that there are cases where the
output signals of some components need to be passed through
processing functions before being fed as inputs to other com-

ponents. For instance, a physical property may be associated
with several measurement units and there might be a function
that converts one measurement unit to another measurement
unit. This piece of expert knowledge can be included in the
semantic database and be utilized as required by the agent Σ.
For example, an appropriate function can be used to transform
degrees Celsius (oC) to degrees Fahrenheit (oF) and vice
versa when required for temperature measurements. Fig. 8
illustrates the intervention of such function to transform the
measurement unit of the signal produced by the sensor (e.g.,
“Celsius” represented by “thing” m) before this is fed to the
controller that expects a signal in “Fahrenheit” represented by
the “thing” m′′.

It can be seen that the semantic matching of the sensor with
the controller only becomes feasible through the transforma-
tion function f ′ = fCF (C) = C ∗ 9

5 + 32 that transforms
degrees Celsius to Fahrenheit. Note the orange-dashed-line
marking of the edges that pass through the function and
facilitate the matching. These edges are also shown as directed,
to capture the flow of transformation from a unit to another and
avoid non-meaningful use of the relations. The transformation
of control signals before being fed to an actuator can be
modelled in a very similar way and is not presented here.

C. Closed-loop Online Composition Decision Algorithm

Summarising the above, as soon as a change appears in
the availability of components, an overall closed-loop online
configuration algorithm is executed by the agent Σ (see
Algorithm 1), so as to enable the shift of the control scheme’s
configuration from (I) to (I + 1). Since this work is not
addressing the selection of controllers based on performance
criteria, it is assumed that the already available controllers are
ranked offline according to pre-defined performance criteria.
This assumption supports the selection and adoption of one
controller (the one with higher ranking) in case more than
one comprise valid (semantic) options for closing the loop.

It is noted that the discussed procedure for output-input
semantic matching is executed as many times as required
during the execution of the algorithm, to find matches between
outputs and inputs of components. Also, the cases where more
than one sensors measure (and/or, more than one actuators
act on) the same physical property, are assumed pre-solved in
this work, adopting existing sensor fusion or actuation signal
fusion techniques. In future implementations, an effort will
be made to automate the encoding of knowledge related to
the performance ranking, as well as to the fusion functions,
thus further automating the decision process. Moreover, it is
emphasized that the method is currently considered applicable
to systems and processes with “slow” (enough) dynamics that
leave time for the agent Σ to complete the execution of
the algorithm and connect the components appropriately, not
compromising the control objectives.

The following section presents specific online composition
cases, to enhance the understanding and illustrate the applica-
bility of the method.

IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, MONTH YYYY 9

Figure 7. The actuator-plant composition model Figure 8. The sensor-function-controller composition model

Algorithm 1 Agent Σ Algorithm
procedure START EXECUTION

2: Find all actuators that are capable of acting on the
plant’s inputs

Find all sensors that are capable of measuring the
plant’s outputs.

4: for each available controller starting with the one of
higher performance ranking do

Check if it can drive the actuators found in previ-
ous step.

6: Exploit also available transformation functions for
the control signals.

if successful then,
8: Find whether the sensors identified earlier mea-

sure the controller’s (mandatory) inputs.
Exploit also available transformation functions

for the sensor’s output signals.
10: if successful then,

Match is confirmed, therefore close the
loop with the matching components and continue oper-
ation of the control system for the specific plant.

12: else
Allow option to drive fewer actuators than

available and iterate with checking the next controller
14: end if

end if
16: end for

end procedure

V. EXAMPLE ONLINE COMPOSITION SCENARIOS

A feedback control scheme of the architecture in Fig. 1 has
been deployed in the plant of the example given in Section III,
with the aim to regulate the temperature at a desired value.

For the purposes of presentation clarity of the work, it is
assumed that all utilized actuators receive inputs of the form
“ON/OFF” or of the form of a range “[umin, umax]” and pro-
duce an action proportional to those values. In practice, each
of these commands may be represented by different actual

values, e.g., “0/1” meaning ‘1’ for ON and ‘0’ for OFF. All
these will be represented by different “things” from the class of
measurement units,M and there can be appropriate functions
in the class of function “things”, F , that can transform one
unit (control decision) to another. Moreover, the contribution
of the work is focusing on the knowledge modelling of control
system components and subsequent configuration inference
and not on the specific implementation of the controllers.
Therefore, for the sake of the example, it is assumed that
agent Σ can select only among three types of controllers;
a periodic open-loop controller, a threshold controller and a
proportional controller, as presented below. In future work,
we plan to present the applicability of the method with more
advanced controllers, as well as online incorporation of criteria
for selecting the appropriate controller to use.

The specifics of the three utilised controllers are discussed
below:

i. Periodic Open Loop Controller: An open-loop controller
which produces an “on/off” signal to an actuator based
on internal cycle configuration. The controller operates
with a default cycle, exchanging between an “off” time-
period followed by an “on” time-period. It also offers a
parameter-input through which the “on” and “off” periods
can be configured. This controller is given by (1).

u1(t) =

{
1 if nT ≤ t ≤ (n+ a)T
0 if (n+ a)T ≤ t ≤ (n+ 1)T

(1)

where T defines one operation cycle, i.e. the time be-
tween two consecutive turn-on events of the controller,
a ∈ (0, 1) is the parameter that configures the “on” and
“off” periods in the cycle, u1(t) is the control decision
produced by controller k1 and n = 0, 1, 2, 3, Such
controller might be utilised for the control of a ventilation
fan, to clean the inside air at fixed cycles.

ii. Threshold Controller: A bang-bang controller which pro-
duces an “on” signal when the measured value of a
physical property is less than its desired value and an
“off” signal when the value is greater. This controller
receives a measurement value of some physical property

IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, MONTH YYYY 10

as an input. The controller is given by (2), where a dead-
zone is also considered to avoid reactions to measurement
noise or other high-frequency oscillations.

u2(y(t), r(t), t) =

{
1 if (r(t)− y(t)) > ε
0 otherwise

(2)

where u2(.) is the control decision produced by controller
k2, y(t) > 0 is the measurement of the state assumed by
the controller, r(t) > 0 is the reference/desired value
of the state and ε is a small positive value that defines
the size of the dead-zone. Such controller may be used
for maintaining the temperature of a room close to a
reference value.

iii. Proportional Controller: A controller that produces a
signal proportional to the tracking error yc(t) − r(t)
which defines the level of operation of an actuator. The
controller receives as input the measured value of a
physical property, while it is also given a reference value
and, optionally, a vector of other parameters of the plant
(e.g., opening of the window) as parameter-inputs, which
help in calculating the gain for stability. By default, the
parameters are considered constant and are given to the
controller upon deployment. This controller is given by:

u3(yc(t), r(t), t) = Γ(θ)(yc(t)− r(t)), (3)

where u3(.) is the control decision produced by the
controller, yc(t) is the measurement of a plant’s state, as
assumed by the controller, r(t) is the desired value of that
state of the plant, Γ is the proportional gain function and θ
is a vector of parameters which affect the gain calculation
for stable control. Such controller may be used for the
regulation of the temperature in a room at specific value.

Moreover, for the implementation of the semantic matching
and the algorithm, the interface of agent Σ with the semantic
database is implemented through the API of the Apache Jena
project [38], while the queries performed in the semantic
database, are written using the SPARQL protocol [39].

The following list summarises the knowledge objects cur-
rently introduced in the knowledge model:
• p1 ∈ P , representing the plant (i.e., the office and its

temperature dynamics) subject to control
• s1 ∈ S, representing the temperature sensor deployed in

the plant
• a1 ∈ A, representing the actuator (heating device) de-

ployed in the plant
• k1, k2, k3 ∈ K, representing the controllers introduced

earlier
• m1,m2,m3,m4 ∈ M, representing the “Celsius” units

produced by the sensor, the kW units produced by the
actuator, as well as the “on/off” and the “[0, 100]” signals
respectively, produced by controllers

• q1, q2 ∈ Q, representing the “temperature” physical
property and the “Heat Energy” property affected by the
actuator, respectively

• The corresponding semantic models of the plant, sensors,
actuators and controllers, as discussed in Section IV

Given the currently available components and semantic
database and considering the plant p1 that is subject to control,
Algorithm 1 runs as follows:

Step 1: The first step focuses on the composition of the
available actuator a1 and the plant p1. The plant has an input
u1 representing the introduction of heat energy in the office,
while the actuator has output y1 representing the produced
heat energy. The respective composition is illustrated as part
of Fig. 9. Note that the colouring convention has been adjusted
here to facilitate the illustration of the semantic matching for
a complete closed-loop. The output-branch of a1, the input-
branch of p1, as well as the path between the respective
leaf-nodes are marked with thick gold line. The location-
branch is marked with a red line and it can be seen that the
respective leaf-nodes of the components coincide. The actuator
is therefore confirmed as acting on the plant input since it is
located in the appropriate location and produces a signal that
affects the required physical property.

Step 2: In a similar way, Fig. 9 shows the composition of
plant p1 and sensor s1, where the respective output-branch and
input-branch are marked with double blue line.

Step 3: Exploiting whether actuator a1, confirmed in previ-
ous step, can be driven by the controller k3 given by (3), which
has the highest performance ranking. This controller produces
a signal in the range [0, 100], represented by measurement
unit m4) It is also assumed that the gain of the controller is
calculated based on prior knowledge of the plant parameters
at deployment, which implies that the controller is associated
with the location l1 = office. On the other hand, the actuator is
assumed receiving an on/off signal as input and this knowledge
is modelled by measurement unit m3. The composition can
be examined in Fig. 9. Following the light grey line from
the controller k3, it can be seen that its output-branch-leaf-
node does not coincide with the input-branch-leaf-node of the
actuator, which means that the components cannot be used
together in the closed-loop scheme. The algorithm suggests
checking for the next controller in the rank, that is, k2. This
controller does produce an on/off signal, which makes the
matching confirmed as shown by the branches marked with
dashed purple line.

Step 4: Exploiting whether sensor s1 confirmed earlier,
measures the input of controller k2. Apart from the measured
input, the controller requires a reference value. It is assumed
that the desired room temperature is read from a pre-defined
source, in degrees Celsius. Therefore, the input u4 of the
controller inherits the location l1 = office from the plant and
the measurement unit m1 = Celsius from the reference value.
On the other hand, the sensor is annotated as measuring in m1

and its location is already given as l1. The leaf-nodes of the
output-branch of the sensor (for its output y4) and the input-
branch of the controller (for its input u4), as well as the leaf-
node of the location-branches of both components, coincide.
This leads to the conclusion that sensor s1 does measure the
input of controller k2. This composition is also illustrated in
the same figure, with the output and input branches marked
with triple green line.

IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, MONTH YYYY 11

Figure 9. The composition of a closed loop with plant p1, actuator a1, sensor s1 and controller k2

A. Replacing and adding sensors and processing functions

At some time-point, the sensor s1 stops transmitting. In
order to help emphasise on the contribution of the agent Σ,
we assume that it is initially non active when the change
happens. The result of this event is captured in Fig. 10, marked
with “(1)” and a red dashed line. The figure illustrates a 24-
hour simulation of the plant’s operation. Sub-fig. 10a, shows
the temperature of the office in degrees Celsius, versus the
simulation time, while Sub-fig. 10b shows the corresponding
control input in Watts. The current situation is such that there
is no measurement feedback and we assume that the controller
is configured so as to stop operating. As a consequence,
and since there is no active semantic mediation, the office
temperature is left to drop (note: the ambient temperature is
modelled as varying between 6 and 15 degrees Celsius in
a 24-hour cycle). Then, at time-point marked with “(2)” we
assume that the agent Σ becomes active again, thus executing
the algorithm to re-configure the feedback control scheme.
Reviewing the execution of the algorithm, it is derived that k2

is ruled out of options since its input is no longer measured.
The algorithm iterates and selects the controller k1, which can
still drive a1, while not expecting any inputs since it operates
in open loop (we assume a default cycle configuration with
a = 0.4, defining a 40% “on” period). This configuration is the
I = 1. We can see that the control of the plant resumes with
the use of the open-loop controller k1 and the temperature is
regulated accordingly, even with degraded performance given
the capabilities of the employed controller.

While k1 operates on a default cycle, a human user up-

dates its semantic model, specifying that its parameter-input
a represents the property “thermal comfort” in the location
“ambient”, defined as a percentage value in the range (0,1). A
software service is also available and semantically annotated
as reading the local “ambient” temperature from a weather ser-
vice on the Internet and transforming it to a “thermal comfort”
signal, mapping the thermal comfort range (25−10oC) to the
range (0,1) (ambient temperatures below 10oC are mapped to
the lower end of the comfort range). These annotations enable
the agent Σ to match the output of the software service to
the parameter-input a of k1, which subsequently adjusts its
operation cycle. The change happens at time-point marked
with “(3)” and shows that the controller k1 increases the “on”
period responding to the very low ambient temperature.

At a future event, a new temperature sensor s2 is de-
ployed to replace the faulty one, which however measures
in degrees Fahrenheit (modelled by m5 ∈ M). With the
opportunity, the heating device is also replaced by another
one (a2 ∈ A), which accepts as input a step signal in the
range “[0, umax]”, where umax is the maximum power at
which the device can operate. In the meantime, two functions
become available as well: i) Function fFC(F) = 5

9 (F − 32),
which transforms degrees Fahrenheit (F) to degrees Celsius;
ii) Function fKW which scales the [0, 100] control signal to the
steps and range of the power signal accepted by the actuator
a2. The semantic database is subsequently updated with the
“things” fCF , fKW ∈ F and their relations to the domain
and range measurement units (here m5 and m4 to m1 and
m2 respectively). Note: these “things”/functions can be also
retrieved online from dedicated cyber sources.

IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, MONTH YYYY 12

0 5 10 15 20 25
0

10

20

30

40

50
Office temperature (state) Vs Time

Time (Hours)

T
em

p
er

at
u
re

 (
C

el
si

u
s)

(1) (2) (3) (4) (5)

(a)

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000
Controlled input in office (heat energy) Vs Time

Time (Hours)

E
n
er

g
y
 (

W
at

ts
)

(1) (2) (3) (4) (5)

(b)

Figure 10. A 24-hour simulation of the plant’s control operation. Event (1): sensor s1 stops transmitting while semantic mediation is off. Event (2): Semantic
mediation is back on. Event (3): parameter a of controller k1 is annotated and subsequently fed by a measurement of ambient temperature. Event (4): Sensor
s2 is deployed, measuring the temperature in degrees Fahrenheit. Event (5): an additional function is imported, transforming the measurement units

The system detects the changes in the components. Given
the current situation, the composition of actuators and the plant
finds a2 capable of producing the signal for plant input u1,
since the output characteristics of the new actuator have not
changed. Moreover, the composition of plant and sensors re-
mains unchanged as well, since s2 measures q1 = temperature,
which is the same physical property. The algorithm continues
by checking the composition of the controller k3 (that is ranked
higher in terms of performance) and the available actuator a2.
Fig. 11 illustrates all resulting compositions. It can be seen
that through the function fKW a path is formed from m4, the
output-branch-leaf-node of k3, to m2, the input-branch-leaf-
node of a2. The components have the same location-branch-
leaf-nodes. This leads to the conclusion that the controller k3

is able to drive the actuator a2. Next, the algorithm checks
whether sensor s2 measures the input of controller k3. Figure
shows that there is a path created through the function fFC ,
from m5 = Fahrenheit, the output-branch-leaf-node of s2, to
m1 = Celsius, the input-branch-leaf-node of k3. Locations are
again the same, therefore, the composition is confirmed. This
leads to the completion of the algorithm and the controller k3

being adopted to close the loop in a new scheme configuration
I = 2.

The simulation results are shown again in Fig. 10. Event
marked with “(4)”, captures the deployment of the new sensor,
initially also assuming no availability of the measurement
units’ transformation function. We choose to show this result
in order to emphasise on the ability to incorporate new
functionality online. It can be seen that the problematic
interpretation of the temperature measurements in the time
period between events “(4)” and “(5)”, causes the controller
to operate wrong. Finally, event “(5)” marks the incorporation
of the unit transformation function, which causes the control
system to return back to normal operation.

Although the above examples of retrieving temperature
measurements from Internet sources, transforming Fahrenheit
to Celsius degrees or adjusting between signal ranges are
simple for presentation purposes, the same mechanism can
be used for more advance transformation paths, e.g., given
the occupancy of a room, derive implicit knowledge about the
increase in temperature and/or Carbon dioxide concentration.

It is emphasized that with the proposed architecture, such
knowledge is not necessarily available in advance, but it can
be incorporated in the control scheme online through the
update of the semantic database. The following sub-sections
offer insight to additional cases to show the strengths of
the approach, however, details about the compositions are
not given, due to high complexity of the graphs and space
limitations.

B. Exploring new plant knowledge

Later in time, the knowledge about the plant is enriched,
adding another location l2 = window. A third sensor s3 is also
deployed that measures the physical property “opening” of the
window (defined as q3) in the measurement unit “percentage”,
represented by the “thing” m6. The plant semantic model is
also enriched with a new output-branch that represents the
measurable window opening. The execution of the algorithm
will lead to configuration I = 3, where sensor s3 will be
confirmed as measuring the window opening, while controller
k3 may be adjusted to consume that measurement through an
optional input for parameters, to update its gain using the new
plant knowledge.

C. Exploring relations between locations

Later, a fourth sensor s4 is deployed outside of the office
(represented by location l3), measuring the ambient tempera-
ture in degrees Celsius. The knowledge model is also adjusted
to be able to update the adjacency relations between locations
to define that l3 is “adjacent to” l1 whenever the opening of
the window (q3) is measured more than 80%. The reasoning
behind this, is that the office temperature becomes almost
equal to the ambient temperature if the heat transfer coefficient
of the opening is big enough.

Executing the algorithm, sensor s4 can be confirmed by
Σ, through the locations’ relation, as measuring the office
temperature. In this case, the values produced by sensors
s2 and s4 can be properly fused (e.g., applying a weighted
average considering the accuracy of devices given by manu-
facturers) and be fed into the controller k3 in a configuration
I = 4. Alternatively, in case of big openings and subsequently

IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, MONTH YYYY 13

Figure 11. The composition of a closed-loop with plant p1, actuator a2, sensor s2 and controller k3, adopting also available signal transformation functions

potentially big heat energy losses, Σ may also be given the
intelligence to shut-down the controllers to avoid high energy
cost (it is left outside the scope of this work).

D. Discussion of results
It can be seen from the presented illustrative scenarios

and simulations that the designed system is able to respond
to changes in the measurement and/or actuation capability
and switch to a different (semantically valid) closed-loop
configuration. Further to the positioning of this work, ad-
dressed in Section I, the key advantages and contributions are
summarised as: i) Unlike typical switching control systems,
there is no pre-requisite to know in advance the possible
components and configurations or their capabilities; These can
be semantically described as they become available; ii) The
switching decision is made online, by the agent Σ, which
is equipped with a logic-based system that exploits expert
knowledge and inference rules and helps producing an explicit
decision signal; The expert knowledge comprises knowledge
about the application domain, standards-compatible modelling
of components, and closed-loop system configuration rules;
Current related work in literature, either does not address the
re-configuration challenge at the closed-loop level or it does
not provide an explicit mechanism for making the switching
decisions when the configurations are not known in advance.
For instance, existing solutions would neither have been able
to feed a controller with the signal of a new sensor, online,
nor to incorporate a transformation function online.

Beyond the advantages, there are some key constraints
that limit the applicability of our solution: i) although in

theory the method works with wired components as well, its
applicability is more straightforward with wireless IoT-enabled
components; ii) new components deployed in the system must
first be semantically described using the pre-defined models,
otherwise they cannot be used effectively; iii) the logic-
based switching decision-making is computationally intensive,
therefore, it may not be applicable to systems with fast
dynamics; iv) the system can only use types of components al-
ready considered in the modelling, i.e., current implementation
cannot use a state-estimator; v) the supported measurement
and actuation capability is limited by the modelled domain
knowledge, i.e., the system cannot use an occupancy sensor
if the property “occupancy” is not already described in the
model.

VI. CONCLUDING REMARKS AND FUTURE PLANS

This article presented a new method and architecture, that
can be adopted in the design of feedback control schemes
within large-scale systems, in order to take advantage of the
online re-configurability characteristics offered by combining
cyber-physical control systems with semantic composition
techniques.

The scope of the work was neither to advance the control
algorithms as such nor to extent the theory behind semantic
composition of services. It was rather to develop a mechanism
that will allow the application of these techniques within the
configuration of switching closed-loop schemes. The applica-
bility of the proposed architecture and methodology has been
tested with an illustrative scenario from the smart buildings
domain. It has been shown that the methodology allows the

IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, MONTH YYYY 14

transparent plugging-in of control system components without
the need to shut-down and re-design the closed-loop.

The results presented here, are considered as the first mile-
stone of our work, since they comprise a complete first-draft
implementation of the framework. Next steps will focus on: i)
semantic modelling of more components, e.g., observers, on-
line learning functions; ii) investigation of closed-loop stability
during switching (the current work assumed only systems
the states of which remain bounded during switching); iii)
methods for optimal selection of closed-loop configuration,
given a set of returned semantically valid options; iv) online
knowledge acquisition, combining semantic modelling with
data driven techniques (in current work the system is pre-
populated with expert knowledge, while it can also incor-
porate new expert knowledge online, i.e., in cases of new
components installed in the large-scale system, but it cannot
generate knowledge on its own; v) the implementation of a
demonstration setup that will pilot-test the applicability in real-
life scenarios.

REFERENCES

[1] M. Webb, “SMART 2020: Enabling the low carbon economy in the
information age,” The Climate Group, London, Tech. Rep., 2008.

[2] D. Snoonian. (2003) IEEE Spectrum - Smart Buildings. Accessed:
2016-10-21. [Online]. Available: http://spectrum.ieee.org/green-tech/
buildings/smart-buildings

[3] T. Weng and Y. Agarwal, “From Buildings to Smart Buildings - Sensing
and Actuation to Improve Energy Efficiency,” IEEE Design Test of
Computers, vol. 29, no. 4, pp. 36–44, Aug 2012.

[4] IEEE SmartGrid. Accessed: 2016-10-21. [Online]. Available: http:
//smartgrid.ieee.org/

[5] D. Jung and A. Savvides, “Estimating Building Consumption Break-
downs using ON/OFF State Sensing and Incremental Sub-Meter De-
ployment,” in 8th ACM Conf. on Embedded Networked Sensor Systems
(SenSys), 2010.

[6] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis and
fault-tolerant control. Springer Berlin Heidelberg, 2006.

[7] K. J. Astrom and B. Wittenmark, Adaptive Control, 2nd ed. Prentice
Hall, 1994.

[8] P. A. Ioannou and J. Sun, Robust Adaptive Control. Englewood Cliffs,
NJ: Prentice-Hall, 1996.

[9] J. Farrell and M. Polycarpou, Adaptive Approximation Based Control:
Unifying Neural, Fuzzy and Traditional Adaptive Approximation Ap-
proaches, N. J. W. Hoboken, Ed. J. Wiley, 2006.

[10] H. Li, L. Bai, L. Wang, Q. Zhou, and H. Wang, “Adaptive neural control
of uncertain nonstrict-feedback stochastic nonlinear systems with output
constraint and unknown dead zone,” IEEE Trans. Syst., Man, Cybern.,
Syst., vol. PP, no. 99, pp. 1–12, 2016.

[11] Y. Li and S. Tong, “Adaptive Fuzzy Output-Feedback Control of Pure-
Feedback Uncertain Nonlinear Systems With Unknown Dead Zone,”
IEEE Trans. Fuzzy Syst., vol. 22, no. 5, pp. 1341–1347, Oct 2014.

[12] H. Li, S. Yin, Y. Pan, and H.-K. Lam, “Model reduction for
interval type-2 Takagi–Sugeno fuzzy systems,” Automatica, vol. 61,
pp. 308–314, 2015. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0005109815003465

[13] T. Knudsen, “Awareness and its use in Plug and Play Process Control,”
in 2009 European Control Conf. (ECC), Aug 2009, pp. 4078–4083.

[14] J. Stoustrup, “Plug & play control: Control technology towards new
challenges,” European Journal of Control, vol. 15, no. 3-4, pp.
311–330, Aug. 2009. [Online]. Available: http://ejc.revuesonline.com/
article.jsp?articleId=13584

[15] J. Bendtsen, K. Trangbaek, and J. Stoustrup, “Plug-and-Play Con-
trol—Modifying Control Systems Online,” IEEE Trans. Control Syst.
Technol., vol. 21, no. 1, pp. 79–93, 2013.

[16] S. Riverso, F. Boem, G. Ferrari-Trecate, and T. Parisini, “Plug-and-Play
Fault Detection and Control-Reconfiguration for a Class of Nonlinear
Large-Scale Constrained Systems,” IEEE Trans. Autom. Control, vol. 61,
no. 12, pp. 3963–3978, Dec 2016.

[17] J. Y. Hung, W. Gao, and J. C. Hung, “Variable structure control: a
survey,” IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 2–22, Feb 1993.

[18] H. Li, P. Shi, D. Yao, and L. Wu, “Observer-based adaptive
sliding mode control for nonlinear Markovian jump systems ,”
Automatica, vol. 64, pp. 133–142, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0005109815004719

[19] J. Lygeros, C. Tomlin, and S. Sastry, Hybrid Systems: Modeling, Analysis
and Control, 2008.

[20] K. Tsuda, D. Mignone, G. Ferrari-Trecate, and M. Morari, “Reconfigura-
tion strategies for hybrid systems,” in Proceedings of the 2001 American
Control Conf. (Cat. No.01CH37148), vol. 2, 2001, pp. 868–873 vol.2.

[21] M. Boasson, “Control systems software,” IEEE Trans. Autom. Control,
vol. 38, no. 7, pp. 1094–1106, 1993.

[22] J. Huang, F. Bastani, I. L. Yen, J. Dong, W. Zhang, F. J. Wang, and H. J.
Hsu, “Extending service model to build an effective service composition
framework for cyber-physical systems,” in IEEE Int. Conf. on Service-
Oriented Computing and Applications, SOCA’ 09, 2009.

[23] P. Glotfelter, T. Eichelberger, and P. J. Martin, “PhysiCloud : A Cloud-
Computing Framework for Programming Cyber-Physical Systems,” in
2014 IEEE Conference on Control Applications (CCA), 2014.

[24] A. Krioukov, G. Fierro, N. Kitaev, and D. Culler, “Building application
stack (BAS),” in Proc. of the Fourth ACM Workshop on Embedded
Sensing Systems for Energy-Efficiency in Buildings - BuildSys ’12.
New York, USA: ACM Press, 2012, p. 72. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2422531.2422546

[25] S. Dawson-Haggerty, A. Krioukov, J. Taneja, S. Karandikar, G. Fierro,
N. Kitaev, and D. Culler, “BOSS: Building Operating System
Services,” in Proceedings of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2013. [Online].
Available: http://www.cs.berkeley.edu/∼stevedh/pubs/nsdi13boss1.pdf

[26] E. Y. Rodin, “Semantic Control Theory,” Applied Mathematics Letters,
vol. 1, no. 1, pp. 73–78, 1988.

[27] Y. Lirov, E. Y. Rodin, B. G. McElhaney, and L. W. Wilbur, “Artificial
Intelligence Modelling of Control Systems,” The Society for Modeling
and Simulation International, vol. 50, no. 1, pp. 12–24, Jan. 1988.
[Online]. Available: http://dx.doi.org/10.1177/003754978805000103

[28] C. Joslyn, “Semantic control systems,” World Futures: Journal of
General Evolution, vol. 45, no. 1-4, pp. 87–123, 1995.

[29] D. Bonino and F. Corno, DogOnt - Ontology Modeling for
Intelligent Domotic Environments. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 790–803. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-88564-1 51

[30] A. Pablo, R. Valiente, and A. Lozano-Tello, “Ontology and SWRL-
Based Learning Model for Home Automation Controlling,” in Ambient
Intelligence and Future Trends-International Symposium on Ambient
Intelligence (ISAmI 2010), J. C. Augusto, J. M. Corchado, P. Novais,
and C. Analide, Eds. Berlin: Springer Berlin Heidelberg, 2010, pp.
79–86.

[31] S. Staab and R. Studer, Eds., Handbook on Ontologies. Springer-Verlag
Berlin Heidelberg, 2009.

[32] G. M. Milis, C. G. Panayiotou, and M. M. Polycarpou, “Towards a Se-
mantically Enhanced Control Architecture,” in IEEE Multi-Conference
on Systems and Control, Dubrovnik, Croatia, 2012.

[33] A. Gómez-Pérez, M. Fernandez-Lopez, and O. Corcho, Ontological
Engineering with examples from the areas of Knowledge Management,
e-Commerce and the Semantic Web. First Edition, 1st ed. London:
Springer-Verlag London, 2004.

[34] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott,
S. McIlraith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne,
E. Sirin, N. Srinivasan, and K. Sycara. (2008) OWL-S: Semantic
Markup for Web Services. Accessed: 2016-10-21. [Online]. Available:
http://www.ai.sri.com/daml/services/owl-s/1.2/overview/

[35] J. Davis and M. S. Rajasree, “RESTDoc: Describe, Discover
and Compose RESTful Semantic Web Services using Annotated
Documentations,” Int. journal of Web & Semantic Technol., vol. 4,
no. 1, pp. 37–49, Jan. 2013. [Online]. Available: http://www.airccse.
org/journal/ijwest/papers/4113ijwest03.pdf

[36] A. Sheth, C. Henson, and S. S. Sahoo, “Semantic Sensor Web,” IEEE In-
ternet Comput., vol. 12, no. 4, pp. 78–83, Jul 2008. [Online]. Available:
http://knoesis.org/library/publications/SHS08-ICColumn-SSW.pdf

[37] Sensor Model Language (SensorML). Accessed: 2016-10-21. [Online].
Available: http://www.opengeospatial.org/standards/sensorml

[38] The Apache Jena project. Accessed: 2016-10-21. [Online]. Available:
http://jena.apache.org/

[39] W3C. (2004) Semantic Web Query Standards. Accessed: 2016-10-21.
[Online]. Available: http://www.w3.org/standards/semanticweb/query

IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, MONTH YYYY 15

George M. Milis (S’08) was born in Cyprus in
1977. He received an MSc in Advanced Computing
with specialisation in Artificial Intelligence from the
Department of Computing, Imperial College Lon-
don, and a Diploma in Electrical and Computing
Engineering from the Aristotle University of Thes-
saloniki, Greece.

Mr Milis has been employed as a researcher in
Intelligent Systems and Software Engineering Lab
in Thessaloniki and then as a Senior ICT Consultant
with European Dynamics SA in Greece. Currently

he is a PhD candidate at the Department of Electrical and Computer Engi-
neering of the University of Cyprus and is working as a Researcher at the
KIOS Research Center for Intelligent Systems and Networks. His research
interests include the study of semantically-enhanced architectures for the
online composition of feedback control and fault detection systems, as well
as interoperability aspects of Critical Infrastructure Systems, and Systems of
Systems in general. He has extensive experience in knowledge extraction and
management, applications of intelligent control in security and social welfare,
as well as, semantically-enhanced interoperable services in e-Government,
Education and beyond. He also has a wide acquaintance with software project
management, analysis and consulting for efficient adoption of technology in
collaborative environments.

Christos G. Panayiotou (SM’06) is an Associate
Professor with the Electrical and Computer En-
gineering (ECE) Department at the University of
Cyprus (UCY). He is also the Deputy Director of the
KIOS Research Center for Intelligent Systems and
Networks for which he is also a founding member.
Christos has received a B.Sc. and a Ph.D. degree
in Electrical and Computer Engineering from the
University of Massachusetts at Amherst, in 1994
and 1999 respectively. He also received an MBA
from the Isenberg School of Management, at the

aforementioned university in 1999. Before joining UCY in 2002, he was a
Research Associate at the Center for Information and System Engineering
(CISE) and the Manufacturing Engineering Department at Boston University
(1999 - 2002). His research interests include distributed and intelligent control
systems, wireless, ad-hoc and sensor networks, computer communication
networks, fault diagnosis, optimization and control of discrete-event systems,
resource allocation, transportation networks and intelligent buildings.

Prof. Panayiotou has published more than 190 papers in international
refereed journals and conferences and is the recipient of the 2014 Best Paper
Award for the journal Building and Environment (Elsevier). He is an Associate
Editor for the Conference Editorial Board of the IEEE Control Systems
Society, the IEEE Transactions on Control Systems Technology, the Journal
of Discrete Event Dynamical Systems and the European Journal of Control.
He held several positions in organizing committees and technical program
committees of numerous international conferences.

Marios M. Polycarpou (F’06) is a Professor of
Electrical and Computer Engineering and the Di-
rector of the KIOS Research Center for Intelligent
Systems and Networks at the University of Cyprus.
He received the B.A degree in Computer Science
and the B.Sc. in Electrical Engineering, both from
Rice University, USA in 1987, and the M.S. and
Ph.D. degrees in Electrical Engineering from the
University of Southern California, in 1989 and 1992
respectively. His teaching and research interests are
in intelligent systems and networks, adaptive and

cooperative control systems, computational intelligence, fault diagnosis and
distributed agents. Dr. Polycarpou has published more than 300 articles in
refereed journals, edited books and refereed conference proceedings, and co-
authored 7 books. He is also the holder of 6 patents.

Prof. Polycarpou is a Fellow of IEEE and IFAC. He is the recipient of
the 2016 IEEE Neural Networks Pioneer Award and the 2014 Best Paper
Award for the journal Building and Environment (Elsevier). He has served as
the President of the IEEE Computational Intelligence Society (2012-2013),
and as the Editor-in-Chief of the IEEE Transactions on Neural Networks
and Learning Systems (2004-2010). He is currently the Vice President of the
European Control Association (EUCA). Prof. Polycarpou has participated in
more than 60 research projects/grants, funded by several agencies and industry
in Europe and the United States, including the prestigious European Research
Council (ERC) Advanced Grant.

