1,175 research outputs found

    Active Layer Groundwater Flow: The Interrelated Effects of Stratigraphy, Thaw, and Topography

    Full text link
    The external drivers and internal controls of groundwater flow in the thawed “active layer” above permafrost are poorly constrained because they are dynamic and spatially variable. Understanding these controls is critical because groundwater can supply solutes such as dissolved organic matter to surface water bodies. We calculated steady‐state three‐dimensional suprapermafrost groundwater flow through the active layer using measurements of aquifer geometry, saturated thickness, and hydraulic properties collected from two major landscape types over time within a first‐order Arctic watershed. The depth position and thickness of the saturated zone is the dominant control of groundwater flow variability between sites and during different times of year. The effect of water table depth on groundwater flow dwarfs the effect of thaw depth. In landscapes with low land‐surface slopes (2–4%), a combination of higher water tables and thicker, permeable peat deposits cause relatively constant groundwater flows between the early and late thawed seasons. Landscapes with larger land‐surface slopes (4–10%) have both deeper water tables and thinner peat deposits; here the commonly observed permeability decrease with depth is more pronounced than in flatter areas, and groundwater flows decrease significantly between early and late summer as the water table drops. Groundwater flows are also affected by microtopographic features that retain groundwater that could otherwise be released as the active layer deepens. The dominant sources of groundwater, and thus dissolved organic matter, are likely wet, flatter regions with thick organic layers. This finding informs fluid flow and solute transport dynamics for the present and future Arctic.Plain Language SummaryGroundwater flow in permafrost watersheds is potentially a key component of global carbon budgets because permafrost soil stores vast amounts of carbon that could be mobilized due to a warming climate and the corresponding increase in soil thaw. In addition to carrying carbon, groundwater can supply important nutrients and solutes to surface waters. However, we do not yet understand the factors that control groundwater flow in soils above permafrost because saturation changes rapidly and continuously, and soil hydraulic properties are largely unknown. We created measurement‐informed calculations of groundwater flow from areas of permafrost with different characteristics and found that soil types, which vary based on the slope of the land surface, are the most important control. Near‐surface soils were identical in hillslopes and valleys, whereas deeper soils in hillslopes allowed for less groundwater flow than in valleys. In early summer, when only the near‐surface soils were thawed, groundwater flows in the hillslopes and valley were similar. In late summer, when the deeper soil was thawed, groundwater flow in the valley remained high, but flow in the hillslope was negligible. Our observations also showed that small mounds on the land surface caused groundwater to be trapped behind underground ice dams.Key PointsDetailed measurements of hydraulic head, hydraulic conductivity, and saturated thicknesses in active layers were made over time and spaceThree main soil layers consistently comprise the stratigraphy of the active layer across the studied Arctic watershedGroundwater flow depends most on the depth of the water table and the subsurface stratigraphy, which varies based on landscape typePeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151862/1/wrcr24085_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151862/2/wrcr24085.pd

    Addressing failure rate uncertainties of marine energy converters

    Get PDF
    publication-status: Publishedtypes: ArticleThe interest in marine renewable energy is strong, but has not led to significant commercial-scale investment and deployment, yet. To attract investors and promote the development of a marine renewable industry a clear concept of project risk is paramount, in particular issues relating to device reliability are critical. In the public domain, reliability information is often scarce or inappropriate at this early stage of development, as little operational experience has been gained. Thus, reliability estimates are fraught with large uncertainties. This paper explores sources and magnitudes of failure rate uncertainty and demonstrates the effect on reliability estimates for a notional marine energy converter. If generic failure rate data forms the basis of a reliability assessment, reliability estimates are not robust and may significantly over- or underestimate system reliability. The Bayesian statistical framework provides a method to overcome this issue. Generic data can be updated with more specific information that could not be statistically incorporated otherwise. It is proposed that adopting such an approach at an early stage in an iterative process will lead to an improved rate of certainty

    A stochastic evolutionary model for capturing human dynamics

    Get PDF
    The recent interest in human dynamics has led researchers to investigate the stochastic processes that explain human behaviour in various contexts. Here we propose a generative model to capture the dynamics of survival analysis, traditionally employed in clinical trials and reliability analysis in engineering. We derive a general solution for the model in the form of a product, and then a continuous approximation to the solution via the renewal equation describing age-structured population dynamics. This enables us to model a wide range of survival distributions, according to the choice of the mortality distribution. We provide empirical evidence for the validity of the model from a longitudinal data set of popular search engine queries over 114 months, showing that the survival function of these queries is closely matched by the solution for our model with power-law mortality

    Quality indicators for Palliative Day Services: A modified Delphi study

    Get PDF
    BACKGROUND: The goal of Palliative Day Services is to provide holistic care that contributes to the quality of life of people with life threatening-illness and their families. Quality indicators provide a means by which to describe, monitor and evaluate the quality of Palliative Day Services provision, and act as a starting point for quality improvement. However, currently, there are no published quality indicators for Palliative Day Services. AIM: To develop and provide the first set of quality indicators that describe and evaluate the quality of Palliative Day Services. DESIGN AND SETTING: A modified Delphi technique was used to combine best available research evidence derived from a systematic scoping review with multi-disciplinary expert appraisal of the appropriateness and feasibility of candidate indicators. The resulting indicators were compiled into ‘toolkit’, and tested in five UK Palliative Day Service settings. RESULTS: A panel of experts independently reviewed evidence summaries for 182 candidate indicators and provided ratings on appropriateness, followed by a panel discussion and further independent ratings of appropriateness, feasibility, and necessity. This exercise resulted in the identification of 30 indicators which were used in practice testing. The final indicator set comprised 7 structural indicators, 21 process indicators, and 2 outcome indicators. CONCLUSIONS: The indicators fulfil a previously unmet need among Palliative Day Service providers by delivering an appropriate and feasible means to assess, review, and communicate the quality of care, and to identify areas for quality improvement

    Atypical disengagement from faces and its modulation by the control of eye fixation in children with Autism Spectrum Disorder

    Get PDF
    By using the gap overlap task, we investigated disengagement from faces and objects in children (9–17 years old) with and without autism spectrum disorder (ASD) and its neurophysiological correlates. In typically developing (TD) children, faces elicited larger gap effect, an index of attentional engagement, and larger saccade-related event-related potentials (ERPs), compared to objects. In children with ASD, by contrast, neither gap effect nor ERPs differ between faces and objects. Follow-up experiments demonstrated that instructed fixation on the eyes induces larger gap effect for faces in children with ASD, whereas instructed fixation on the mouth can disrupt larger gap effect in TD children. These results suggest a critical role of eye fixation on attentional engagement to faces in both groups
    • 

    corecore