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Abstract

The interest in marine renewable energy is strong, but has not led to signifi-
cant commercial scale investment and deployment, yet. To attract investors
and promote the development of a marine renewable industry a clear concept
of project risk is paramount, in particular issues relating to device reliabil-
ity are critical. In the public domain, reliability information is often scarce
or inappropriate at this early stage of development, as little operational ex-
perience has been gained. Thus, reliability estimates are fraught with large
uncertainties. This paper explores sources and magnitudes of failure rate un-
certainty and demonstrates the effect on reliability estimates for a notional
marine energy converter. If generic failure rate data forms the basis of a reli-
ability assessment, reliability estimates are not robust and may significantly
over- or underestimate system reliability. The Bayesian statistical framework
provides a method to overcome this issue. Generic data can be updated with
more specific information that could not be statistically incorporated other-
wise. It is proposed that adopting such an approach at an early stage in an
iterative process will lead to an improved rate of certainty.
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1. Introduction

The interest in marine renewable energy is driven by issues of energy se-
curity, climate change and economic development. Wave and tidal energy is
recognised to have a large potential with a worldwide technically exploitable
resources between 140-750 TWh/year for presently available devices, and up
to 2,000 TWh/year in the case of a mature industry [1, p.544]. In the UK as
much as 17% of the electricity demand (58 TWh/year out of 340 TWh/year)
could be provided by wave energy [2] contributing to security of supply and
offseting an estimated 430g CO2/kWh [3]. Another main driver in the UK
is the opportunity to initiate economic growth with the creation of domestic
and export markets. Market size estimations indicate worldwide investment
volumes of up to £500 bn [4, p. 174] and annual electricity revenues in the
range of £60 bn - £190 bn [3, p. 7].

At present, this potential is not tapped as marine energy only provides
a diminutive share of 0.01% (0.54TWh) of renewable electricity worldwide
in 2008 [5, p. 9]. Mueller and Wallace [6, p.4378] have reviewed the main
obstacles that need to be overcome to establish marine renewable energy
generation, key of which are:

• Creation of cost effective and reliable marine energy converters (MECs)

• Permit issues of commercial wave parks

• Grid integration

While the latter two items deal with aspects of regulation and integration
into the existing electricity infrastructure, this paper focuses on the reliabil-
ity of marine energy converters, which will have a severe economic impact on
projects due to potential failures and resulting unavailability [3, p.25].

From an engineering point of view, marine energy is one of the least
developed renewable energy technologies and is regarded as unproven [7]. The
technological development phase has to be directly followed with reliability
demonstration and cost reduction to successfully compete with with other
means of conventional and renewable electricity generation [8, p.96].

Additionally, marine renewables are subject to significant uncertainties
that hinder commercial development and are a barrier to the necessary in-
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vestments. Mackay et al. [9] identify three main sources of uncertainty that
influence the estimates of achievable annual electricity production:

• Uncertainty regarding energy resource conditions at the project site

• Conversion uncertainty, i.e. variations and unknowns along the conver-
sion chain ’wave to wire’

• Uncertainty about the device availability

While the uncertainty of wave resource conditions can be estimated, the
availability of devices is regarded as “ (. . . ) perhaps the most difficult to
quantify” [9]. The main reasons are that i) it is difficult to predict failures
for a new technology and ii) operational experience is scarce.

In particular, even the application of proven components and equipment
in a harsh dynamic marine environment under significantly altered load con-
ditions, implies large uncertainties regarding failure mechanisms and fre-
quency. These uncertainties may lead to either costly design safety factors
or field failures both of which would impede project viability.

A dilemma that is often faced when predicting the reliability of a new
technology is that the sole use of specific- or generic data does not lead to
appropriate reliability estimates. Shafaghi [10, p.87] emphasises that “(. . . )
plant specific data is statistically invalid due to a short duration of data
collection or limited population of equipment. Generic data, on the other
hand, does not reflect the characteristics and conditions of the plant that the
equipment is operated under.” The Bayesian statistical framework provides
a method to overcome this issue as the generic data can be updated with
available plant specific information to give an improved reliability estimate.
This is achieved through the utilisation of available additional information
and data that could not be statistically incorporated otherwise.

The benefit of the Bayesian methodology is demonstrated by a number
of different reliability applications.

• Updating of past field failure rates with specific Accelerated Life Tests
(ALT) for new electronic products [11].

• Validation and updating of numerical fatigue life simulations with sparse
full-scale tests for train wheel axles [12].
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• Refinement of generic failure rate information through expert knowl-
edge [10].

• Updating of past failure rate data with engineering knowledge and relia-
bility demonstration test results for mechanical automotive components
[13, 14].

• Updating of generic failure rate estimates with operational process
plant data [15].

These examples illustrate the capacity of the Bayesian approach to incor-
porate a range of different data and information sources. In the examples
above the uncertainty of reliability estimates was reduced with Bayesian tech-
niques, i.e. a decrease of the predicted failure rates’ standard deviations and
confidence intervals was achieved.

When comparing these examples from other industries to the applica-
tion for marine renewable components, a major difference is the quality of
the prior information. The automotive industry for example can rely on
decades of experience, development and mass production with established
failure rate records. Guida [13] considers past data of 250,000 cars and ap-
plies the Bayesian approach to calibrate past data for a similar, redesigned
component. Such a detailed and applicable pool of data is not available
for the marine renewable case as operational experience is based on single
prototypes.

Consequently, a Bayesian approach for marine renewable components can-
not accurately determine reliability estimates, but strives to reduce the main
uncertainties and indicate the correct order of magnitude of failure rates
if generic and specific failure rate data are being combined. Furthermore,
through incorporating best ’engineering knowledge’ it will provide greater
confidence in failure rate estimates for the purpose of reliability assessment.

The objective of this paper is to explore the sources and extent of com-
ponent failure rate uncertainties for marine energy converters and to demon-
strate the effect this has on overall system reliability estimates.

The paper is organised in four main parts. Section 2 takes a stakeholder
perspective to highlight the need of addressing failure rate uncertainties.
In section 3 and 4, the source and extent of failure rate uncertainties is
described and the effect on system reliability is demonstrated for a generic
marine energy converter. In section 5, a Bayesian updating procedure is being
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proposed to reduce the uncertainty of failure rate estimates. The method and
its utility is illustrated with a case study on umbilical failure rate updates.
The paper concludes with the main outcomes.

2. Stakeholder perspective and actuarial perception

Reliability information is required by a range of stakeholders in the marine
renewable energy sector [16]:

• Project developers, i.e. companies developing commercial multi-device
schemes that need quantified empirical evidence regarding device per-
formance and survivability and associated technical risks to assess and
ensure the project viability.

• Manufacturing and service companies, comprising materials- and com-
ponent suppliers, contractors for installation, operation and mainte-
nance, are expected to meet the required performance parameters.

• Investors require clear technology assessment based on performance
criteria.

• Insurance companies require evidence of survivability, reliability and
safety at all project stages (design, production, installation and opera-
tion) and suitable risk control.

The common theme of these stakeholder views is that commercial de-
velopment is driven by traditional plant-performance indicators (reliability,
availability and maintainability) as it is these that impact heavily on project
cost and revenue. While prototype development is mainly focused on the
demonstration of working principles, conversion efficiency and the surviv-
ability of devices, addressing these commercial drivers is imperative for the
successful transition to commercial deployment.

In particular, the actuarial perception of marine renewables is reserved
due to the associated risks and uncertainties. An extensive study on financial
risk management instruments for renewable energy projects [17] carried out
a risk assessment for the different technologies covering resource -, technical
- and operational risk. For each type the probability of the risk affecting
a project and the impact of the risk are evaluated. In the case of marine
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renewable technology it was found that there is ”(. . . ) insufficient operating
experience, and schemes need to demonstrate long-term performance and
reliability” [17, p.10].

The results of an associated survey [18] provide a more detailed appraisal
of the main underwriting concerns and specific risks. The responding in-
surance companies pointed to i) the risk of new, prototypical and scale-up
technologies; ii) inherent technical perils associated with offshore installation,
operation and maintenance of projects; and iii) the risk of faulty design, ma-
terial and workmanship.

More than 50% of respondents did not see future business potential in
wave and tidal energy, reflecting the concerns over an inmature technology
which is located offshore.

The insurance industry will typically only insure those project risks that
can be classified and priced, i.e. have the following attributes:

• Quantifiable losses

• Reliable estimates concerning claim frequency and severity

• Small potential for catastrophic loss

• Feasible premium levels

• Large pool of potential insured projects to distribute risk

The prevalent risks of marine energy devices coupled with the lack of
appropriate reliability information and associated uncertainties [19, 20] make
it challenging to estimate the failure frequency and consequence and deter
insurers and investors alike. The sources, potential magnitude and effect of
failure rate uncertainties are described and demonstrated in the following.

3. Failure rate characteristics

3.1. Uncertainty of failure rates

The term uncertainty can be pragmatically defined as a situation where
the available quantitative and qualitative information does not suffice to
predict the behaviour and characteristics of a system at a particular required
level [21].
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The type of uncertainty can be classified as either aleatory or epistemic
uncertainty [22]. Aleatory uncertainty describes random, irreducible or stochas-
tic uncertainty that characterises the inherent variation of physical systems
or the environment under consideration. Epistemic uncertainty refers to re-
ducible, subjective, state of knowledge or model uncertainty describing a lack
of knowledge, data or information. The categorisation in either of the above
groups defines if the uncertainty can be decreased through additional tests
or knowledge (epistemic) or if it is irreducible (aleatory).

Whenever the reliability of a system is predicted, it is essential to identify
and account for the uncertainty inherit to these predictions. This is partic-
ularly the case if new components, new materials and different operating
environments increase the prediction uncertainty [23, p. 1356].

The main source of failure rate uncertainty for MECs is the lack of knowl-
edge with regard to inadequate or missing experimental and operational data.
This manifests itself in the use of generic, rather than device/operation spe-
cific reliability failure rate data, which can often not be directly applied.
Furthermore the detailed specification of components and sub-systems is gen-
erally not publicly available [20].

Two aspects of epistemic failure rate uncertainty are explored in the fol-
lowing:

• The variation of the mean failure rate.

• The uncertainty about the failure probability distribution and parame-
ters, which describes the variation of failure rate with time and depends
on the knowledge of failure types and mechanisms.

3.2. Mean failure rate variation

There are few studies that compare predicted failure rates against ac-
tual field failure rates to give an indication of prediction uncertainties. Cox
and Tait [24, p. 193ff.] report two cases where detailed surveys have been
conducted.

In the first study operational failure rates for a ten year period in a
processing plant are compared with previously predicted mean failure rates.
The ratio rF of actual rate to predicted rate is reported to stay largely within
0 < rF < 4. The most extreme case of divergence exhibited a factor of rF >
1000. Such large deviations were reasoned to be due to unexpected failure
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modes that were not considered during the analysis. Other discrepancies
were mainly caused by maintenance shortfalls (e.g. erroneous replacement,
calibration and undetected degradation) and imprecise failure definition for
deteriorating components.

The second comparative study [24] considered failure records for mechan-
ical, electrical and electronic equipment. About 2/3 of the investigated cases
did not exceed a factor rF = 2 and almost all cases (93%) did not exceed
rF = 4.

An incomplete analysis where potential failure modes are overlooked can
have serious impact, as this source of uncertainty is not considered in proba-
bilistic risk assessments [25]. This risk can only be reduced through quality
control of the analysis together with dedicated research and testing programs.

In most engineering disciplines (in)accuracies of a factor of 10 are not ac-
ceptable. However, it may be deemed as a reasonable accuracy in the realm
of probabilistic reliability assessments. As an example, a failure rate data
bank, set up by the International Energy Agency [26], compares equipment
and instrumentation failure rates between different fusion test reactors. It
classifies values that agree within a factor of 3 as “good”, within a factor of
10 as “fair” and values that differ by more than an a factor of 10 as “poor”
comparison. Similarly, Zio [27, p.314] applies variations up to a factor of 10
in a failure rate uncertainty analysis.

Two implications may be drawn from the above cases:

1. One of the main objectives during the development phase should be
to reveal all likely, and possibly unknown failure modes. This is par-
ticularly the case for components that are established in other indus-
tries/environments but may be subject to new failure modes if deployed
in a MEC.

2. When the critical failure modes are established and quantified, the two
described studies show failure rate variability factors of up to four, while
failure rate data that agrees within a factor of 10 might be considered
as sufficient for probabilistic calculations.

3.3. Failure rate distribution

To quantify and to model failure rates a variety of statistical probability
distributions is available. The exponential distribution is commonly applied
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and implies that the failure rate is constant with time whereas the log normal-
andWeibull distribution allow the description of time dependant failure rates,
i.e. early failures and ageing effects (a more detailed list of distributions can
be found in [28, 29]).

The two-parameter Weibull distribution is a flexible distribution that
allows to model different types of failure rate behaviour (Equation 1).

1. Early failures with decreasing failure rate over time (α < 1)

2. Random failures during the useful life of the system, showing constant
failure rates (α = 1)

3. Wear-out failures or ageing failures exhibiting increasing failure rates
over time (α > 1)

An ubiquitous reliability concept is the bathtub curve [30, 31] that is
qualitatively shown in Figure 1. It describes the failure rate over time and
considers all three types of failure rate behaviour.

R(t) = e−(λt)α (1)

Where λ is the scale parameter and α is the shape parameter of the distribution.

The reciprocal value of the scale parameter 1
λ
is also called the charac-

teristic life. In the case where α = 1 this corresponds to the commonly used
mean time to failure (MTTF).

The initial assumption in most reliability assessments is a constant failure
rate, modelled by an exponential distribution, which only covers the ’bottom-
part’ of the bathtub curve (see Figure 1). A constant failure rate implies
that the failure mechanism is time-independent. This is arguably not the
case for failure mechanisms like fatigue, wear and corrosion. Wolfram [19,
p.62] advocates the use of log normal probability distributions for component
reliability.

4. Modelling failure rate uncertainty for MECs

One method to account for the inherit variability of component failure
rates is to model the uncertainty by failure rate probability distribution func-
tions. Compared to simple point estimates, the degree of uncertainty is re-
flected in the system reliability calculations [32].

The model that is proposed here aims to use a conventional Reliability
Block Diagram and to explicitly consider the uncertainties of the input values
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Figure 1: Bathtub curve failure rate behaviour, modelled with Weibull distribution λ = 1

(i.e. failure rates) with regard to i) mean failure rate variation and ii) failure
rate behaviour.

4.1. Model structure

A generic MEC is modelled as series of four sub-systems (Figure 2) and is
assumed to be non-repairable for the period of one year, which is commonly
regarded as a sensible maintenance interval [19]. Further assuming that the
series structure consists of independent components, the system reliability
RS(t) can be calculated as the product of the component reliability functions
Ri(t) for the number of components/sub-systems in series i = 1 ... n [28,
p.153]:

RS(t) =
n
∏

i=1

Ri(t) (2)

Mooring Structure
Power

take-off

Power

Transmission

Figure 2: Block diagram of generic floating marine energy converter

The sub-system reliabilities are assumed to follow a two-parameter Weibull
distribution (Equation 1). The mean failure rates λMean have been estimated
for generic sub-systems of a notional hydraulic wave energy converter in [20].
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In order to estimate the effect that a lack of knowledge regarding the
exact mean failure rates has, the analysis was also undertaken for higher and
lower bounds of the mean failure rate; based on the indicative ranges given
in [24]. A lower bound is defined as λLower = λMean · 0.5 and an upper bound
is calculated as λUpper = λMean · 2.

The effect of different failure rate behaviours is modelled with the Weibull
shape parameters α. The values are based on experience with wind turbine
failures [33] where early failures are modelled by α1 = 0.5; the useful life
(constant failure rate) is modelled with α2 = 1 and wear-out failures use
α3 = 3. The failure rate parameters are summarised in Table 1.

Table 1: Failure rate parameters

Mean Failure rate [20]
Sub-system Mooring Structure Power take-off Transmission
λMean [1/year] 0.56 1.19 2.42 0.47

Failure behaviour [33]
Type Early Constant Wear-out
α [−] 0.5 1.0 3.0

A basic reliability system has been modelled to demonstrate the effect of
the stated uncertainties on system reliability for three cases:

• Case 1 - To determine the effect of uncertainty in the mean failure rate.
A low, medium and high mean failure rate are applied to each system
while the failure rate distribution is assumed to be constant with time,
i.e. α = 1.

• Case 2 - To determine the effect of uncertainty in the failure rate model.
In this case the system reliability for each sub-system is computed for
different shape parameters α , corresponding to the ”early”, ”constant”
and ”wear-out” regions, while the failure rate is assumed as the medium
mean failure rate.

• Case 3 - To determine the effect of uncertainty in both the mean failure

rate λ and the failure rate model. The sub-system reliability is com-
puted with varying values for shape parameter α and mean failure rate
λ.
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Figure 3: Case 1 - System reliability of in-series subsystems for different mean failure rates
(λ)

4.2. Model results

The system reliabilities for the variation of the mean failure rate (case 1)
are shown in Figure 3. The reliability (survivor) function R(t) describes
the probability that the system does not fail in the given time interval
(here 1 year=8,760 hours). The uncertainty that is introduced through
the application of three different mean failure rates leads to a considerable
range of possible system reliability. To illustrate this we define ∆R(t) =
λupper(t)− λlower(t).

For example at T ime = 2, 000h a spread of ∆R(2, 000h) = 0.5 is present.
The spread decreases with time to ∆R(4, 000h) = 0.35 and to ∆R(6, 000h) =
0.2.

The system reliability for different failure rate behaviours (case 2) is
shown in Figure 4 and exhibits a larger divergence at the beginning with
∆R(2, 000h) = 0.7 and decreases soon with ∆R(4, 000h) = 0.15. In both
cases the system reliability probabilities R(t) show a considerable extent of
uncertainty for the separate variation of mean failure rate and behaviour.

The different mean failure rates and behaviours have been further com-
bined to an optimistic and pessimistic scenario (case 3). The optimistic
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Figure 4: Case 2 - System reliability of in-series subsystems for different failure rate
behaviour parameters (α)

setting assumes the lower bound of the mean failure rate in conjunction with
wear-out failures. The pessimistic setting assumes the higher mean failure
rate and early failure behaviour as input. The resulting system reliabilities
are shown in Figure 5. Considering the variation across the full time range,
it is not easy to make a statement about the realistic reliability of the sys-
tem. As a consequence of these variations, a simple constant failure rate
assumption may significantly over- or underestimate the system reliability.
Therefore, a reliability assessment that is based on generic data with a con-
stant failure rate assumption clearly is not robust, as it does not include
considerations of existing variations in the mean failure rate and behaviour.

5. Reduction of failure rate uncertainty

The Bayesian updating methodology is a promising approach to reduce
the uncertainty of failure rates. In this section the mathematical theorem is
briefly described and the updating procedure is subsequently demonstrated
for the failure rate of a dynamic marine power cable.
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5.1. Bayes’ theorem

The statistical Bayesian model consists of two parts [34, p.15]:

1. The prior probability distribution expresses the knowledge of the pa-
rameters of interest before any additional data has been obtained/analysed.

2. The likelihood probability function describes the data that has been
obtained from a test/experiment.

Both elements, prior distribution and likelihood function are then com-
bined to compute the posterior probability distribution. This resulting
distribution describes the uncertainty (degree of belief) of the parameter af-
ter the additional information has been considered.

Bayes’ theorem relates the probability that the event or hypothesis (Hk) is
true given the data/events (D) to the probability of the data, if the hypothesis
was true (Pr(D |Hk)). Mathematically this is generally stated as:

Pr(Hk|D) =
Pr(D |Hk) Pr(Hk)

∑

∞

i=1 Pr(D |Hi) Pr(Hi)
(3)
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With H1, H2, ..., Hn as mutually exclusive and exhaustive events, stemming from a

sample space S with Pr (∪∞

i=1
Hi) = 1(exhaustive); Hi ∩Hj = ∅(independent) for i 6= j;

Pr(Hi) > 0 for each i; and D as an event in S with Pr(D) > 0.
Or if the theorem is expressed in the form of probability density functions

with regard to the failure rate λ it can be rewritten as:

g(λ | x) =
f(x | λ) g(λ)

∫

∞

0
f(x | λ) g(λ)dλ

(4)

Where g(λ |x) is the posterior distribution for λ given the recorded data x, g(λ) is the prior

distribution of the failure rate λ and f(x |λ) is the likelihood function for the observed

data x given the unknown failure rate λ.

5.2. Failure rate refinement for marine power cable under dynamic loading

The application of the Bayesian updating methodology to reduce failure
rate uncertainty is in this paper demonstrated for a dynamic marine power
cable, also termed as umbilical. The process comprises three consecutive
steps:

• Establishing the prior distribution

• Deriving the likelihood distribution

• Computing the posterior distribution

5.2.1. Establishing the Prior Distribution

As prior information a failure rate estimate for an umbilical given in the
OREDA handbook [35, p.811] is used. There are considerable differences
between the cases reported in OREDA and the marine energy application.
Oil and gas production umbilicals often comprise not only electrical but also
multiple hydraulic supplies. Also the power cables used for floating marine
energy applications will be exposed to more energetic sea conditions and
possibly higher dynamic load mechanisms. Despite these differences, the
OREDA data can be considered to be a ’good starting point’ as prior re-
liability information. The handbook summarises the data from 9 umbilical
units with 2 reported failures, external leakage and transmission failure.
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The handbook generally assumes an exponential failure rate distribution
with time. The probability density function f(t) is thus defined as:

f(t|λ) = λe−λt with t > 0 (5)

where λ is the component failure rate, where the possibility of choosing a
different λ from the distribution in Equation 6 is acknowledged.

The mean failure rate is given as λ = 4.2669/106h with a standard devi-
ation σ = 4.8281/106h. The number of hours denote the time aggregated in
service. This corresponds to a MTTF = 1

λ
= 26.7 years with σ = 23.6 years.

The handbook further suggests to model the sampling variability of the
recorded failures as a Gamma distribution with the parameters k and Θ,
Γ(k,Θ) (see Equation 6). The properties of the Γpdf are: Mean µ = k

Θ
and

variance σ2 = k
Θ2 . Hence the distribution parameters can be calculated as:

Θ = µ

σ2 and k = µθ.
Computing the Γ parameters accordingly for the dynamic umbilical with

σ2 = 23.31 and µ = 4.27 yields: k = 0.78 and Θ = 5.46.

π(λ|k,Θ) =
Θk

Γ(k)
λk−1 e−Θλ (6)

Where Θ = µ

σ2 and k = µθ; with Γ(k) =
∫

∞

0
tk−1e−tdt for Θ > 0.

In the following the Γ distribution π(λ|k, Θ) with the parameters com-
puted for the given umbilical failure rate information will be used as prior
information (see Figure 6).

5.2.2. Likelihood Distribution

As a second step the likelihood distribution must be established. Failure
rate data obtained during field trials, prototype or component testing of the
actual component could be used as an information basis. In this example the
likelihood distributions are chosen as illustration fro two important failure
scenarios. The aim is to examine how new information may be modelled
through likelihood functions and how this will result in an updated posterior
distribution. The likelihood distribution for both cases is modelled with a
two-parameter Weibull distribution (see Equation 7 and Figure 7). The mean
µ and variance σ2 of the failure rate are computed using Equations 8 and 9.
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1. Modelling the effect of fatigue type failures. Physical component tests
may provide an indicative component failure rate. Accelerated fatigue
tests subject the component to a certain number of load cycles that
can be related to a distinct operational time. Through repeated tests
a mean failure rate may be established. To illustrate how such infor-
mation may be incorporated with existing knowledge a mean failure
rate µfatigue = 10/106h with σ2

fatigue = 26/106h shall be assumed. The
likelihood function can thus be modelled as a Weibull pdf with a = 11
and b = 2. These values are chosen so that µfatigue coincides with the
upper confidence limit of the prior distribution and σ2

fatigue < σ2
prior.

Thus the assumed MTTF for the likelihood distribution is about 11
years and one has a somewhat stronger confidence in the test results
as opposed to the prior information.

2. Modelling the effect of unknown failure modes. The application of
components in new environments bears the risk that additional fail-
ure modes (FM) arise which have not been considered in the design
phase. Such an unknown, overlooked failure mode may typically lead
to a failure rate increase by an order of magnitude. Such informa-
tion may become available from initial field installations, but may also
be modelled as ’engineering knowledge’ to explore the effect of a po-
tentially unknown failure mode. For the case illustrated here, it is
assumed that the upper confidence limit of the prior distribution is ex-
ceeded by an order of magnitude, and fraught with a large degree of
uncertainty. Thus, the likelihood function is modelled as Weibull pdf
with the parameters a = 105 and b = 5. This yields µFM = 96/106h
and σ2

FM = 487/106h.

f(λ|a, b) = ba−bλb−1e−(
λ

a
)
b

(7)

µ(f) = a

(

Γ(1 +
1

b
)

)

(8)

σ2(f) = a2
(

Γ(1 +
2

b
)− Γ(1 +

1

b
)2
)

(9)

Beyond this application of ’engineering knowledge’ one must resort to
component testing, where the distribution of failure rates is likely to be de-
rived from a limited number of test points. To illustrate this the assumed
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Figure 7: Likelihood distribution for two illustrative cases. Mean failure rates λ and
associated variance σ2 are given in Table 2.
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Figure 8: Block diagram of modelling procedure to establish the likelihood distribution
function
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Table 2: Weibull distribution parameters modelling the assumed failure rate likelihood
distribution

Description Weibull pdf Measures [ 1
106hours

]
Case 1: Fatigue tests a = 11 b = 2 µ = 10 σ2 = 26
Case 2: Unknown failure mode a = 105 b = 5 µ = 96 σ2 = 487

likelihood distributions were used to generate 5 sample points for each case
from which the likelihood distribution is subsequently evaluated. The mod-
elling procedure is illustrated in Figure 8. The two main steps comprise:

1. Drawing a random sample from the distribution specified for the two
cases (defined in Table 2) to reflect the fact that any additional infor-
mation will have a limited number of data from which the likelihood
distribution can be estimated. For the cases considered here, a sample
size of n = 5 was chosen, the question what sample size is required to
satisfy a given reliability target is discussed in detail in [29, chap. 10].

2. The likelihood distribution is established by fitting a two-parameter
Weibull distribution to the simulated data. This is somewhat trivial
for the case study, as the data was generated from a Weibull distri-
bution. However, fitting a distribution to measured test results is a
crucial step in the application of real experimental data. In this case
there is no physical reason to choose the Weibull distribution but it is
employed because it provides a reasonable fit to a range of observed
data and is thus widely used for reliability applications. Figure 9 shows
an example of the sampled failure rates and the fitted Weibull distri-
bution; as expected the fit indicates good agreement. To establish an
adequate statistical fit to the data is likely to be not as straight forward
for an actual data set, but usually the Weibull distribution proves to
be flexible enough.

5.2.3. Posterior Distribution

Once the prior and likelihood distribution are established, the posterior
distribution can be computed via Bayes’ theorem (Equation 3 and 4).

Figure 10 shows the updating process and posterior distribution result for
case 1 and 2. Each plot shows the prior distribution (dashed line), the fitted
likelihood distribution (dotted line) and the updated posterior distribution
(solid line, with 90% confidence interval). The plot shows how the initial
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Figure 9: Weibull Probability plot, showing the sampled data points and the fitted distri-
bution

prior distribution is updated with the likelihood function, which yields the
posterior probability distribution.

For case 1 the posterior distribution yields a 90% confidence interval
CIposterior,1 = [1, 11]. This is a reduction compared to the confidence interval
of the prior distribution CIprior = [0.2, 14]. The initial Γ distribution is
amended to a distribution with similar shape to a Weibull distribution. This
illustrates, how the failure rate uncertainty may be reduced when applicable
data with a limited variance, i.e. a reasonably strong belief in the data, is
available to update generic failure rate information.

For case 2 the posterior distribution does not clearly resemble either dis-
tribution. The reason for this is the relatively large variance σ2 for both the
prior and the likelihood distribution. Due to the significantly larger mean
failure rate modelled for the unknown failure mode likelihood distribution,
the posterior distribution is shifted to the right of the prior, yielding a 90%
confidence interval CIposterior, 2 = [9, 46]. Thus, in the light of the additional
information the failure rate uncertainty would increase.

Both examples indicate the updating procedure when an initial distri-
bution with large uncertainties is updated with additional information. De-
pending on the ’belief’ in the additional information, which is expressed by
the variance σ2 of the likelihood distribution the uncertainty in the fail-
ure rate distribution is decreased when σ2

prior > σ2
likelihood and increased if

σ2
prior < σ2

likelihood.
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Figure 10: Prior, likelihood and posterior distribution for umbilical failure rate update.
90% confidence interval indicated for posterior distribution.
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5.3. Specific reliability information for marine renewables

The uncertainty of failure rates will be reduced if generic data is updated
by specific failure rate information obtained in a marine environment. This
could either be the simulation of field conditions in purpose-built test rigs or
the deployment of devices in the field.

An initiative to test the reliability of MEC components on a dedicated
test rig is described in [36]. It proposes the application of service simulation
testing where field loads are replicated in accelerated reliability tests. Such
testing will provide specific reliability information that can be used to reduce
the uncertainty of generic failure rates. Additionally, such testing would
potentially reveal unexpected failure modes and design weaknesses ahead of
field deployments.

By its very nature, dealing as it does with an investigation of the problems
associated with sparse data and operational experience, the paper should be
seen as illustrative, although the results from this study have inspired and
guided the development of specific component testing equipment and meth-
ods. Specific component test facilities for dynamic marine applications are
implemented at the University of Exeter as part of the Peninsula Research
Institute of Marine Renewable Energy (PRIMaRE) [37].

6. Conclusions

The paper has explored two sources of failure rate uncertainty, estimated
their extent and shown the effect on the system reliability for a notional
generic MEC. The following conclusions are drawn.

Major sources of failure rate uncertainties are unknown failure modes
which typically lead to a substantial underestimate of the field failure rate.
Thus it is desirable to identify all failure modes, to be confident that the
estimated failure rate ranges in the same order of magnitude as the actual
field failure rate. It was also shown that a potential misrepresentation of
the component failure behaviour leads to uncertainties in the overall system
reliability. If a simple constant failure rate is assumed both early failures and
wear-out failures are typically not considered which leads to an overestima-
tion of the system reliability.

These considerable uncertainties are a risk for project developers and
investors. In the case of marine renewable energy the required technology
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investment is inhibited and the envisaged commercial-scale deployment is
deferred.

In order to address failure rate uncertainties, reliability assessments should
consider the source and extent of uncertainties to identify components where
the uncertainty needs to be reduced. The outlined Bayesian updating pro-
vides a promising approach to reduce the uncertainty of failure rates. The
modelled examples show how failure rate distributions are influenced through
the incorporation of ’engineering knowledge’ and test data. In this way, un-
certainties can be reduced through specific component reliability testing and
the potential effect of unknown failure modes can be quantified at an early
design stage to ensure an acceptable mean failure rate. Hence the applica-
tion of the Bayesian method helps to reduce the uncertainty of component
failure rates and to improve the confidence in system reliability estimates for
emerging technologies.
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