176 research outputs found

    Effects of landscape-scale oyster-reef restoration on nekton communities in a temperate estuary

    Get PDF
    Restoration of degraded biogenic habitats is a common practice to recover lost biodiversity and ecosystem services. Oyster reefs are globally imperiled essential fish habitat, motivating interest in novel restoration approaches. Therefore, I examined fish community response to construction of six 180-oyster-patch-reef complexes in a section of a North Carolina estuary with no extant oyster reefs. I assessed nekton communities at reef and control sites with nets, traps and dual frequency identification sonar (DIDSON). Occurrences of nekton were higher at reef sites than controls across gear types. DIDSON footage revealed >300% more nekton, while catch data showed only ~5% increase at reefs over controls. Several species including pinfish, silver perch, blue crab and mullet showed greatest difference at reefs highlighting that restoration benefits vary across species. Restoring oyster reefs with a landscape-scale patch reef approach is an effective way to maximize the ecosystem services available to a wide variety of species.Master of Scienc

    Dynamics of extended-spectrum cephalosporin resistance genes in Escherichia coli from Europe and North America

    Get PDF
    Extended-spectrum cephalosporins (ESCs) are critically important antimicrobial agents for human and veterinary medicine. ESC resistance (ESC-R) genes have spread worldwide through plasmids and clonal expansion, yet the distribution and dynamics of ESC-R genes in different ecological compartments are poorly understood. Here we use whole genome sequence data of Enterobacterales isolates of human and animal origin from Europe and North America and identify contrasting temporal dynamics. AmpC β-lactamases were initially more dominant in North America in humans and farm animals, only later emerging in Europe. In contrast, specific extended-spectrum β-lactamases (ESBLs) were initially common in animals from Europe and later emerged in North America. This study identifies differences in the relative importance of plasmids and clonal expansion across different compartments for the spread of different ESC-R genes. Understanding the mechanisms of transmission will be critical in the design of interventions to reduce the spread of antimicrobial resistance

    'It's a film' : medium specificity as textual gesture in Red road and The unloved

    Get PDF
    British cinema has long been intertwined with television. The buzzwords of the transition to digital media, 'convergence' and 'multi-platform delivery', have particular histories in the British context which can be grasped only through an understanding of the cultural, historical and institutional peculiarities of the British film and television industries. Central to this understanding must be two comparisons: first, the relative stability of television in the duopoly period (at its core, the licence-funded BBC) in contrast to the repeated boom and bust of the many different financial/industrial combinations which have comprised the film industry; and second, the cultural and historical connotations of 'film' and 'television'. All readers of this journal will be familiar – possibly over-familiar – with the notion that 'British cinema is alive and well and living on television'. At the end of the first decade of the twenty-first century, when 'the end of medium specificity' is much trumpeted, it might be useful to return to the historical imbrication of British film and television, to explore both the possibility that medium specificity may be more nationally specific than much contemporary theorisation suggests, and to consider some of the relationships between film and television manifest at a textual level in two recent films, Red Road (2006) and The Unloved (2009)

    Structural and Evolutionary Analyses Show Unique Stabilization Strategies in the Type IV Pili of Clostridium difficile

    Get PDF
    Type IV pili are produced by many pathogenic Gram-negative bacteria and are important for processes as diverse as twitching motility, biofilm formation, cellular adhesion and horizontal gene transfer. However, many Gram-positive species, including C. difficile, also produce Type IV pili. Here, we identify the major subunit of the Type IV pili of C. difficile, PilA1, and describe multiple three-dimensional structures of PilA1, demonstrating the diversity found in three strains of C. difficile. We also model the incorporation of both PilA1 and a minor pilin, PilJ, into the pilus fiber. Although PilA1 contains no cysteine residues, and therefore cannot form the disulfide bonds found in all Gram-negative Type IV pilins, it adopts unique strategies to achieve a typical pilin fold. The structures of PilA1 and PilJ exhibit similarities with the Type IVb pilins from Gram-negative bacteria that suggest that the Type IV pili of C. difficile are involved in microcolony formation

    Nietzsche on Film

    Get PDF
    This is the final version of the article. Available from Edinburgh University Press via the DOI in this record.This article tracks the many appearances of Friedrich Nietzsche throughout the history of cinema. It asks how cinema can do Nietzschean philosophy in ways that are unique to the medium. It also asks why the cinematic medium might be so pertinent to Nietzschean philosophy. Adhering to the implicit premise that, as Jacques Derrida once put it, ‘there is no totality to Nietzsche's text, not even a fragmentary or aphoristic one,’ the essay's mode of argument avoids reductive totalization and instead comprises a playful sampling of variously Nietzschean manifestations across dissimilar films. It begins with an extended account of Baby Face, a 1933 drama from which the abundant references to Nietzsche were either altered or expunged ahead of theatrical release. It then maps some of the philosophical consistencies across two genres in which characters read Nietzsche with apparent frequency: the comedy and the thriller. While comedies and thrillers both treat Nietzsche and his readers with suspicion, and do so for perceptive historical reasons, the essay then asks what an affirmatively Nietzschean film might look like. It explores this possibility through a discussion of cinematic animation in general and then more specifically via several critically familiar films that self-consciously evolve their aesthetic through Nietzsche's philosophy. The essay concludes by affirming Béla Tarr's final film as one of the medium's greatest realizations of a Nietzschean film-philosophy. The Turin Horse, released in 2011, is exemplary because it takes Nietzsche as a narrative premise only to sublate that premise into a unique visual style

    Structure of \u3ci\u3eClostridium difficile\u3c/i\u3e PilJ Exhibits Unprecedented Divergence from Known Type IV Pilins

    Get PDF
    Type IV pili are produced by many pathogenic Gram-negative bacteria and are important for processes as diverse as twitching motility, cellular adhesion, and colonization. Recently, there has been an increased appreciation of the ability of Gram-positive species, including Clostridium difficile, to produce Type IV pili. Here we report the first three-dimensional structure of a Grampositive Type IV pilin, PilJ, demonstrate its incorporation into Type IV pili, and offer insights into how the Type IV pili of C. difficile may assemble and function. PilJ has several unique structural features, including a dual-pilin fold and the incorporation of a structural zinc ion. We show that PilJ is incorporated into Type IV pili in C. difficile and present a model in which the incorporation of PilJ into pili exposes the C-terminal domain of PilJ to create a novel interaction surface

    Secondary Chromosomal Attachment Site and Tandem Integration of the Mobilizable Salmonella Genomic Island 1

    Get PDF
    The Salmonella genomic island 1 is an integrative mobilizable element (IME) originally identified in epidemic multidrug-resistant Salmonella enterica serovar Typhimurium (S. Typhimurium) DT104. SGI1 contains a complex integron, which confers various multidrug resistance phenotypes due to its genetic plasticity. Previous studies have shown that SGI1 integrates site-specifically into the S. enterica, Escherichia coli, or Proteus mirabilis chromosome at the 3′ end of thdF gene (attB site)

    Global transmission of extended-spectrum cephalosporin resistance in Escherichia coli driven by epidemic plasmids

    Get PDF
    Background: Extended-spectrum cephalosporins (ESCs) are third and fourth generation cephalosporin antimicrobials used in humans and animals to treat infections due to multidrug-resistant (MDR) bacteria. Resistance to ESCs (ESC-R) in Enterobacterales is predominantly due to the production of extended-spectrum β-lactamases (ESBLs) and plasmid-mediated AmpC β-lactamases (AmpCs). The dynamics of ESBLs and AmpCs are changing across countries and host species, the result of global transmission of ESC-R genes. Plasmids are known to play a key role in this dissemination, but the relative importance of different types of plasmids is not fully understood. Methods: In this study, Escherichia coli with the major ESC-R genes bla CTX-M-1, bla CTX-M-15, bla CTX-M-14 (ESBLs) and bla CMY-2 (AmpC), were selected from diverse host species and other sources across Canada, France and Germany, collected between 2003 and 2017. To examine in detail the vehicles of transmission of the ESC-R genes, long- and short-read sequences were generated to obtain complete contiguous chromosome and plasmid sequences (n = 192 ESC-R E. coli). The types, gene composition and genetic relatedness of these plasmids were investigated, along with association with isolate year, source and geographical origin, and put in context with publicly available plasmid sequences. Findings: We identified five epidemic resistance plasmid subtypes with distinct genetic properties that are associated with the global dissemination of ESC-R genes across multiple E. coli lineages and host species. The IncI1 pST3 bla CTX-M-1 plasmid subtype was found in more diverse sources than the other main plasmid subtypes, whereas IncI1 pST12 bla CMY-2 was more frequent in Canadian and German human and chicken isolates. Clonal expansion also contributed to the dissemination of the IncI1 pST12 bla CMY-2 plasmid in ST131 and ST117 E. coli harbouring this plasmid. The IncI1 pST2 bla CMY-2 subtype was predominant in isolates from humans in France, while the IncF F31:A4:B1 bla CTX-M-15 and F2:A-:B- bla CTX-M-14 plasmid subtypes were frequent in human and cattle isolates across multiple countries. Beyond their epidemic nature with respect to ESC-R genes, in our collection almost all IncI1 pST3 bla CTX-M-1 and IncF F31:A4:B1 bla CTX-M-15 epidemic plasmids also carried multiple antimicrobial resistance (AMR) genes conferring resistance to other antimicrobial classes. Finally, we found genetic signatures in the regions surrounding specific ESC-R genes, identifying the predominant mechanisms of ESC-R gene movement, and using publicly available databases, we identified these epidemic plasmids from widespread bacterial species, host species, countries and continents. Interpretation: We provide evidence that epidemic resistance plasmid subtypes contribute to the global dissemination of ESC-R genes, and in addition, some of these epidemic plasmids confer resistance to multiple other antimicrobial classes. The success of these plasmids suggests that they may have a fitness advantage over other plasmid types and subtypes. Identification and understanding of the vehicles of AMR transmission are crucial to develop and target strategies and interventions to reduce the spread of AMR. Funding: This project was supported by the (Theme 1, Epidemiology and Evolution of Pathogens in the Food Chain)

    Uropathogenic Escherichia coli P and Type 1 Fimbriae Act in Synergy in a Living Host to Facilitate Renal Colonization Leading to Nephron Obstruction

    Get PDF
    The progression of a natural bacterial infection is a dynamic process influenced by the physiological characteristics of the target organ. Recent developments in live animal imaging allow for the study of the dynamic microbe-host interplay in real-time as the infection progresses within an organ of a live host. Here we used multiphoton microscopy-based live animal imaging, combined with advanced surgical procedures, to investigate the role of uropathogenic Escherichia coli (UPEC) attachment organelles P and Type 1 fimbriae in renal bacterial infection. A GFP+ expressing variant of UPEC strain CFT073 and genetically well-defined isogenic mutants were microinfused into rat glomerulus or proximal tubules. Within 2 h bacteria colonized along the flat squamous epithelium of the Bowman's capsule despite being exposed to the primary filtrate. When facing the challenge of the filtrate flow in the proximal tubule, the P and Type 1 fimbriae appeared to act in synergy to promote colonization. P fimbriae enhanced early colonization of the tubular epithelium, while Type 1 fimbriae mediated colonization of the center of the tubule via a mechanism believed to involve inter-bacterial binding and biofilm formation. The heterogeneous bacterial community within the tubule subsequently affected renal filtration leading to total obstruction of the nephron within 8 h. Our results reveal the importance of physiological factors such as filtration in determining bacterial colonization patterns, and demonstrate that the spatial resolution of an infectious niche can be as small as the center, or periphery, of a tubule lumen. Furthermore, our data show how secondary physiological injuries such as obstruction contribute to the full pathophysiology of pyelonephritis
    corecore