125 research outputs found

    Age-dependent white matter disruptions after military traumatic brain injury: Multivariate analysis results from ENIGMA brain injury

    Get PDF
    Mild Traumatic brain injury (mTBI) is a signature wound in military personnel, and repetitive mTBI has been linked to age-related neurogenerative disorders that affect white matter (WM) in the brain. However, findings of injury to specific WM tracts have been variable and inconsistent. This may be due to the heterogeneity of mechanisms, etiology, and comorbid disorders related to mTBI. Non-negative matrix factorization (NMF) is a data-driven approach that detects covarying patterns (components) within high-dimensional data. We applied NMF to diffusion imaging data from military Veterans with and without a self-reported TBI history. NMF identified 12 independent components derived from fractional anisotropy (FA) in a large dataset (n = 1,475) gathered through the ENIGMA (Enhancing Neuroimaging Genetics through Meta-Analysis) Military Brain Injury working group. Regressions were used to examine TBI- and mTBI-related associations in NMF-derived components while adjusting for age, sex, post-traumatic stress disorder, depression, and data acquisition site/scanner. We found significantly stronger age-dependent effects of lower FA in Veterans with TBI than Veterans without in four components (q \u3c 0.05), which are spatially unconstrained by traditionally defined WM tracts. One component, occupying the most peripheral location, exhibited significantly stronger age-dependent differences in Veterans with mTBI. We found NMF to be powerful and effective in detecting covarying patterns of FA associated with mTBI by applying standard parametric regression modeling. Our results highlight patterns of WM alteration that are differentially affected by TBI and mTBI in younger compared to older military Veterans

    Activin type I receptor polymorphisms and body composition in older individuals with sarcopenia-Analyses from the LACE randomised controlled trial

    Get PDF
    BACKGROUND: Ageing is associated with changes in body composition including an overall reduction in muscle mass and a proportionate increase in fat mass. Sarcopenia is characterised by losses in both muscle mass and strength. Body composition and muscle strength are at least in part genetically determined, consequently polymorphisms in pathways important in muscle biology (e.g., the activin/myostatin signalling pathway) are hypothesised to contribute to the development of sarcopenia.METHODS: We compared regional body composition measured by DXA with genotypes for two polymorphisms (rs10783486, minor allele frequency (MAF) = 0.26 and rs2854464, MAF = 0.26) in the activin 1B receptor (ACVR1B) determined by PCR in a cross-sectional analysis of DNA from 110 older individuals with sarcopenia from the LACE trial.RESULTS: Neither muscle mass nor strength showed any significant associations with either genotype in this cohort. Initial analysis of rs10783486 showed that males with the AA/AG genotype were taller than GG males (174±7cm vs 170±5cm, p = 0.023) and had higher arm fat mass, (median higher by 15%, p = 0.008), and leg fat mass (median higher by 14%, p = 0.042). After correcting for height, arm fat mass remained significantly higher (median higher by 4% padj = 0.024). No associations (adjusted or unadjusted) were seen in females. Similar analysis of the rs2854464 allele showed a similar pattern with the presence of the minor allele (GG/AG) being associated with greater height (GG/AG = 174±7 cm vs AA = 170 ±5cm, p = 0.017) and greater arm fat mass (median higher by 16%, p = 0.023). Again, the difference in arm fat remained after correction for height. No similar associations were seen in females analysed alone.CONCLUSION: These data suggest that polymorphic variation in the ACVR1B locus could be associated with body composition in older males. The activin/myostatin pathway might offer a novel potential target to prevent fat accumulation in older individuals.</p

    Activin type I receptor polymorphisms and body composition in older individuals with sarcopenia—Analyses from the LACE randomised controlled trial

    Get PDF
    Background: Ageing is associated with changes in body composition including an overall reduction in muscle mass and a proportionate increase in fat mass. Sarcopenia is characterised by losses in both muscle mass and strength. Body composition and muscle strength are at least in part genetically determined, consequently polymorphisms in pathways important in muscle biology (e.g., the activin/myostatin signalling pathway) are hypothesised to contribute to the development of sarcopenia.Methods: We compared regional body composition measured by DXA with genotypes for two polymorphisms (rs10783486, minor allele frequency (MAF) =0.26 and rs2854464, MAF =0.26) in the activin 1B receptor (ACVR1B) determined by PCR in a cross-sectional analysis of DNA from 110 older individuals with sarcopenia from the LACE trial.Results: Neither muscle mass nor strength showed any significant associations with either genotype in this cohort. Initial analysis of rs10783486 showed that males with the AA/AG genotype were taller than GG males (174±7cm vs 170±5cm, p=0.023) and had higher arm fat mass, (median higher by 15%, p=0.008), and leg fat mass (median higher by 14%, p=0.042). After correcting for height, arm fat mass remained significantly higher (median higher by 4% padj=0.024). No associations (adjusted or unadjusted) were seen in females.Similar analysis of the rs2854464 allele showed a similar pattern with the presence of the minor allele (GG/AG) being associated with greater height (GG/AG = 174±7 cm vs AA = 170 ±5cm, p=0.017) and greater arm fat mass (median higher by 16%, p=0.023). Again, the difference in arm fat remained after correction for height. No similar associations were seen in females analysed alone.Conclusion: These data suggest that polymorphic variation in the ACVR1B locus could be associated with body composition in older males. The activin/myostatin pathway might offer a novel potential target to prevent fat accumulation in older individuals

    ACE I/D genotype associates with strength in sarcopenic men but not with response to ACE inhibitor therapy in older adults with sarcopenia:Results from the LACE trial

    Get PDF
    BACKGROUND: Angiotensin II (AII), has been suggested to promote muscle loss. Reducing AII synthesis, by inhibiting angiotensin converting enzyme (ACE) activity has been proposed as a method to inhibit muscle loss. The LACE clinical trial was designed to determine whether ACE inhibition would reduce further muscle loss in individuals with sarcopenia but suffered from low recruitment and returned a negative result. Polymorphic variation in the ACE promoter (I/D alleles) has been associated with differences in ACE activity and muscle physiology in a range of clinical conditions. This aim of this analysis was to determine whether I/D polymorphic variation is associated with muscle mass, strength, in sarcopenia or contributed to the lack of response to treatment in the LACE study.METHODS: Sarcopenic individuals were recruited into a 2x2 factorial multicentre double-blind study of the effects of perindopril and/or leucine versus placebo on physical performance and muscle mass. DNA extracted from blood samples (n = 130 72 women and 58 men) was genotyped by PCR for the ACE I/D polymorphism. Genotypes were then compared with body composition measured by DXA, hand grip and quadriceps strength before and after 12 months' treatment with leucine and/or perindopril in a cross-sectional analysis of the influence of genotype on these variables.RESULTS: Allele frequencies for the normal UK population were extracted from 13 previous studies (I = 0.473, D = 0.527). In the LACE cohort the D allele was over-represented (I = 0.412, D = 0.588, p = 0.046). This over-representation was present in men (I = 0.353, D = 0.647, p = 0.010) but not women (I = 0.458, D = 0.532, p = 0.708). In men but not women, individuals with the I allele had greater leg strength (II/ID = 18.00 kg (14.50, 21.60) vs DD = 13.20 kg (10.50, 15.90), p = 0.028). Over the 12 months individuals with the DD genotype increased in quadriceps strength but those with the II or ID genotype did not. Perindopril did not increase muscle strength or mass in any polymorphism group relative to placebo.CONCLUSION: Our results suggest that although ACE genotype was not associated with response to ACE inhibitor therapy in the LACE trial population, sarcopenic men with the ACE DD genotype may be weaker than those with the ACE I/D or II genotype.</p

    Analysis of IFT74 as a candidate gene for chromosome 9p-linked ALS-FTD

    Get PDF
    BACKGROUND: A new locus for amyotrophic lateral sclerosis – frontotemporal dementia (ALS-FTD) has recently been ascribed to chromosome 9p. METHODS: We identified chromosome 9p segregating haplotypes within two families with ALS-FTD (F476 and F2) and undertook mutational screening of candidate genes within this locus. RESULTS: Candidate gene sequencing at this locus revealed the presence of a disease segregating stop mutation (Q342X) in the intraflagellar transport 74 (IFT74) gene in family 476 (F476), but no mutation was detected within IFT74 in family 2 (F2). While neither family was sufficiently informative to definitively implicate or exclude IFT74 mutations as a cause of chromosome 9-linked ALS-FTD, the nature of the mutation observed within F476 (predicted to truncate the protein by 258 amino acids) led us to sequence the open reading frame of this gene in a large number of ALS and FTD cases (n = 420). An additional sequence variant (G58D) was found in a case of sporadic semantic dementia. I55L sequence variants were found in three other unrelated affected individuals, but this was also found in a single individual among 800 Human Diversity Gene Panel samples. CONCLUSION: Confirmation of the pathogenicity of IFT74 sequence variants will require screening of other chromosome 9p-linked families

    Effect of perindopril or leucine on physical performance in older people with sarcopenia: the LACE randomized controlled trial

    Get PDF
    Acknowledgements: AAS, TA and MDW acknowledge support from the NIHR Newcastle Biomedical Research Centre. AA acknowledges support from the Health Services Research Unit which is core funded by the Chief Scientist Office of the Scottish Government Health and Social Care Directorate. The authors acknowledge support from the NIHR Ageing Clinical Research Network and the NHS Scotland Support for Science programme, The authors would also thank the efforts of all the research nurses and other ants to the trial, all the participants, and all the staff of the Tayside Clinical Trials Unit for their support of the trial. Funding: The LACE trial (project reference 13/53/03) is funded by the Efficacy and Mechanism Evaluation (EME) Programme, an MRC and NIHR partnership. The views expressed in this publication are those of the authors and not necessarily those of the MRC, NIHR or the Department of Health and Social Care.Peer reviewedPublisher PD
    • 

    corecore