113 research outputs found

    Spatially resolved observations of warm ionized gas and feedback in local ULIRGs

    Full text link
    We present VLT/VIMOS-IFU emission-line spectroscopy of a volume limited sample of 18 southern ULIRGs selected with z<0.09 and dec<10. By covering a wide range of ULIRG types, this dataset provides an important set of templates for comparison with high-redshift galaxies. We employed an automated Gaussian line fitting program to decompose the emission line profiles of Halpha, [NII], [SII], and [OI] into individual components, and chart the Halpha kinematics, and the ionized gas excitations and densities. 11/18 of our galaxies show evidence for outflowing warm ionized gas with speeds between 500 and a few 1000 km/s, with the fastest outflows associated with systems that contain an AGN. Our spatially resolved spectroscopy has allowed us to map the outflows, and in some cases determine for the first time to which nucleus the wind is associated. In three of our targets we find line components with widths >2000 km/s over spatially extended regions in both the recombination and forbidden lines; in two of these three, they are associated with a known Sy2 nucleus. Eight galaxies have clear rotating gaseous disks, and for these we measure rotation velocities, virial masses, and calculate Toomre Q parameters. We find radial gradients in the emission line ratios in a significant number of systems in our study. We attribute these gradients to changes in ionizing radiation field strength, most likely due to an increasing contribution of shocks with radius. We conclude with a detailed discussion of the results for each individual system, with reference to the existing literature. Our observations demonstrate that the complexity of the kinematics and gas properties in ULIRGs can only be disentangled with high sensitivity, spatially resolved IFU observations. Many of our targets are ideal candidates for future high spatial resolution follow-up observations.Comment: 44 pages, 8 figures, 3 tables, accepted to MNRA

    Kathryns Wheel: A spectacular galaxy collision discovered in the Galactic neighbourhood

    Get PDF
    We report the discovery of the closest collisional ring galaxy to the Milky Way. Such rare systems occur due to "bulls-eye" encounters between two reasonably matched galaxies. The recessional velocity of about 840 km/s is low enough that it was detected in the AAO/UKST Survey for Galactic Hα\alpha emission. The distance is only 10.0 Mpc and the main galaxy shows a full ring of star forming knots, 6.1 kpc in diameter surrounding a quiescent disk. The smaller assumed "bullet" galaxy also shows vigorous star formation. The spectacular nature of the object had been overlooked because of its location in the Galactic plane and proximity to a bright star and even though it is the 60th^{\rm th} brightest galaxy in the HI Parkes All Sky Survey (HIPASS) HI survey. The overall system has a physical size of ∼\sim15 kpc, a total mass of M∗=6.6×109M_\ast = 6.6\times 10^9 M⊙_\odot (stars + HI), a metallicity of [O/H]∼−0.4\sim-0.4, and a star formation rate of 0.2-0.5 M⊙_\odot\,yr−1^{-1}, making it a Magellanic-type system. Collisional ring galaxies therefore extend to much lower galaxy masses than commonly assumed. We derive a space density for such systems of 7×10−5 Mpc−37 \times 10^{-5}\,\rm Mpc^{-3}, an order of magnitude higher than previously estimated. This suggests Kathryn's Wheel is the nearest such system. We present discovery images, CTIO 4-m telescope narrow-band follow-up images and spectroscopy for selected emission components. Given its proximity and modest extinction along the line of sight, this spectacular system provides an ideal target for future high spatial resolution studies of such systems and for direct detection of its stellar populations.Comment: 18 pages, 12 figures, accepted for publication in MNRA

    Probing the Dust Properties of Galaxies up to Submillimetre Wavelengths I. The Spectral Energy Distribution of dwarf galaxies using LABOCA

    Get PDF
    We present 870 micron images of four low metallicity galaxies (NGC1705, Haro11, Mrk1089 and UM311) observed with the Large APEX BOlometer CAmera (LABOCA). We model their spectral energy distributions combining the submm observations of LABOCA, 2MASS, IRAS, Spitzer photometric data and the IRS data for Haro11. We find that a significant mass of dust is revealed when using submm constraints compared to that measured with only mid-IR to far-IR observations extending only to 160 microns. For NGC1705 and Haro11, an excess in submillimeter wavelengths is detected and we rerun our SED procedure adding a cold dust component (10K) to better describe the high 870 micron flux derived from LABOCA observations, which significantly improves the fit. We find that at least 70% of the dust mass of these two galaxies can reside in a cold dust component. We also show that the subsequent dust-to-gas mass ratios, considering HI and CO observations, can be strikingly high for Haro11 in comparison with what is usually expected for these low-metallicity environments. Furthermore, we derive the SFR of our galaxies and compare them to the Schmidt law. Haro11 falls anomalously far from the Schmidt relation. These results may suggest that a reservoir of hidden gas could be present in molecular form not traced by the current CO observations. We also derive the total IR luminosities derived from our models and compare them with relations that derive this luminosity from Spitzer bands. We find that the Draine & Li (2007) formula compares well to our direct IR determinations.Comment: 22 pages, 7 figures, 10 tables, accepted for publication in A&

    Star formation in the centre of NGC 1808 as observed by ALMA

    Full text link
    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of 85.69 and 99.02 GHz continuum emission and H42α\alpha and H40α\alpha lines emission from the central 1~kpc of NGC 1808. These forms of emission are tracers of photoionizing stars but unaffected by dust obscuration that we use to test the applicability of other commonly star formation metrics. An analysis of the spectral energy distributions shows that free-free emission contributes about 60 to 90 per cent of the continuum emission in the 85-100 GHz frequency range, dependent on the region. The star formation rate (SFR) derived from the ALMA free-free emission is 3.1±0.33.1\pm0.3~M⊙_\odot~yr−1^{-1}. This is comparable to the SFRs measured from the infrared emission, mainly because most of the bolometric energy from the heavily obscured region is emitted as infrared emission. The radio 1.5~GHz emission yields a SFR 25 per cent lower than the ALMA value, probably because of the diffusion of the electrons producing the synchrotron emission beyond the star-forming regions. The SFRs measured from the extinction-corrected Hα\alpha line emission are about 40 to 65 per cent of the SFR derived from the ALMA data, likely because this metric was not calibrated for high extinction regions. Some SFRs based on extinction-corrected ultraviolet emission are similar to those from ALMA and infrared data, but given that the ultraviolet terms in the extinction correction equations are very small, these metrics seem inappropriate to apply to this dusty starburst.Comment: 18 pages, 7 figures, 10 tables, accepted for publication in MNRA

    ALMA Observations toward the starburst dwarf galaxy NGC 5253: I. Molecular cloud properties and scaling relations

    Full text link
    We present high-spatial-resolution (\sim 0\farcs2, or ∼\sim3\,pc) CO(2--1) observations of the nearest young starburst dwarf galaxy, NGC\,5253, taken with the Atacama Large Millimeter/submillimeter Array. We have identified 118 molecular clouds with average values of 4.3\,pc in radius and 2.2\,\kms\, in velocity dispersion, which comprise the molecular cloud complexes observed previously with ∼\sim100\,pc resolution. We derive for the first time in this galaxy the I(CO)I{\rm (CO)}--NN(H2_2) conversion factor, XX = 4.1−2.4+5.9×10204.1^{+5.9}_{-2.4}\times10^{20}\,cm−2^{-2}(K\,\kms)−1^{-1}, based on the virial method. The line-width and mass-to-size relations of the resolved molecular clouds present an offset on average toward higher line-widths and masses with respect to quiescent regions in other nearby spiral galaxies and our Galaxy. The offset in the scaling relation reaches its maximum in regions close to the central starburst, where velocity dispersions are ∼\sim 0.5 dex higher and gas mass surface densities are as high as ΣH2\Sigma_{\rm H_2} = 103^3\,\Msol\,pc −2^{-2}. These central clouds are gravitationally bound despite the high internal pressure. A spatial comparison with star clusters found in the literature enables us to identify six clouds that are associated with young star clusters. Furthermore, the star formation efficiencies (SFEs) of some of these clouds exceed those found in star-cluster-forming clouds within our Galaxy. We conclude that once a super star cluster is formed, the parent molecular clouds are rapidly dispersed by the destructive stellar feedback, which results in such a high SFE in the central starburst of NGC\,5253.Comment: 18 pages, 11 figures, accepted to Ap

    The bright extragalactic ALMA redshift survey (BEARS) – II. Millimetre photometry of gravitational lens candidates

    Get PDF
    We present 101- and 151-GHz ALMA continuum images for 85 fields selected from Herschel observations that have 500-μm flux densities >80 mJy and 250–500-μm colours consistent with z > 2, most of which are expected to be gravitationally lensed or hyperluminous infrared galaxies. Approximately half of the Herschel 500-μm sources were resolved into multiple ALMA sources, but 11 of the 15 brightest 500-μm Herschel sources correspond to individual ALMA sources. For the 37 fields containing either a single source with a spectroscopic redshift or two sources with the same spectroscopic redshift, we examined the colour temperatures and dust emissivity indices

    The Spectral Energy Distribution of Dust Emission in the Edge-on spiral galaxy NGC 4631 as seen with Spitzer and the James Clerk Maxwell telescope

    Get PDF
    We explore variations in dust emission within the edge-on Sd spiral galaxy NGC 4631 using 3.6-160 μm Spitzer Space Telescope data and 450-850 μm JCMT data with the goals of understanding the relation between PAHs and dust emission, studying the variations in the colors of the dust emission, and searching for possible excess submillimeter emission compared to what is expected from dust models extrapolated from far-infrared wavelengths. The 8 μm PAH emission correlates best with 24 μm hot dust emission on 1.7 kpc scales, but the relation breaks down on 650 pc scales, possibly because of differences in the mean free paths between photons that excite the PAHs and photons that heat the dust and possibly because the PAHs are destroyed by the hard radiation fields within some star formation regions. The ratio of 8 μm PAH emission to 160 μm cool dust emission appears to vary as a function of radius. The 70 μm/160 μm and 160 μm/450 μm flux density ratios are remarkably constant even though the surface brightnesses vary by factors of 25, which suggests that the emission is from dust heated by a nearly uniform radiation field. Globally, we find an excess of 850-1230 μm emission relative to what would be predicted by dust models. The 850 μm excess is highest in regions with low 160 μm surface brightnesses, although the magnitude depends on the model fit to the data. We rule out variable emissivity functions or ~4 K dust as the possible origins of this 850 μm emission, but we do discuss the other possible mechanisms that could produce the emission

    Dust Temperatures in the Infrared Space Observatory Atlas of Bright Spiral Galaxies

    Full text link
    We examine far-infrared and submillimeter spectral energy distributions for galaxies in the Infrared Space Observatory Atlas of Bright Spiral Galaxies. For the 71 galaxies where we had complete 60-180 micron data, we fit blackbodies with lambda^-1 emissivities and average temperatures of 31 K or lambda^-2 emissivities and average temperatures of 22 K. Except for high temperatures determined in some early-type galaxies, the temperatures show no dependence on any galaxy characteristic. For the 60-850 micron range in eight galaxies, we fit blackbodies with lambda^-1, lambda-2, and lambda^-beta (with beta variable) emissivities to the data. The best results were with the lambda^-beta emissivities, where the temperatures were ~30 K and the emissivity coefficient beta ranged from 0.9 to 1.9. These results produced gas to dust ratios that ranged from 150 to 580, which were consistent with the ratio for the Milky Way and which exhibited relatively little dispersion compared to fits with fixed emissivities.Comment: AJ, 2003, in pres

    Ultraviolet through far-infrared spatially resolved analysis of the recent star formation in M81 (NGC 3031)

    Get PDF
    The recent star formation (SF) in the early-type spiral galaxy M81 is characterized using imaging observations from the far-ultraviolet to the far-infrared. We compare these data with models of the stellar, gas, and dust emission for subgalactic regions. Our results suggest the existence of a diffuse dust emission not directly linked to the recent star formation. We find a radial decrease of the dust temperature and dust mass density, and in the attenuation of the stellar light. The IR emission in M81 can be modeled with three components: (1) cold dust with a temperature = 18 ± 2 K, concentrated near the H II regions but also presenting a diffuse distribution; (2) warm dust with = 53 ± 7 K, directly linked with the H II regions; and (3) aromatic molecules, with diffuse morphology peaking around the H II regions. We derive several relationships to obtain total IR luminosities from IR monochromatic fluxes, and we compare five different star formation rate (SFR) estimators for H II regions in M81 and M51: the UV, H alpha, and three estimators based on Spitzer data. We find that the H alpha luminosity absorbed by dust correlates tightly with the 24 mu m emission. The correlation with the total IR luminosity is not as good. Important variations from galaxy to galaxy are found when estimating the total SFR with the 24 mu m or the total IR emission alone. The most reliable estimations of the total SFRs are obtained by combining the H alpha emission (or the UV) and an IR luminosity (especially the 24 mu m emission), which probe the unobscured and obscured SF, respectively. For the entire M81 galaxy, about 50% of the total SF is obscured by dust. The percentage of obscured SF ranges from 60% in the inner regions of the galaxy to 30% in the outer zones

    The Herschel Virgo Cluster Survey - XIII. Dust in early-type galaxies

    Get PDF
    Aims. We study the dust content of a large optical input sample of 910 early-type galaxies (ETG) in the Virgo cluster, extending also to the dwarf ETG, and examine the results in relation with those on the other cold ISM components. Methods. We searched for far-infrared emission in all galaxies of the input sample using the 250 micron image of the Herschel Virgo Cluster Survey (HeViCS). This image covers a large fraction of the cluster. For the detected ETG we measured fluxes in 5 bands from 100 to 500 micron, and estimated the dust mass and temperature with modified black-body fits. Results. Dust is detected above the completeness limit of 25.4 mJy at 250 micron in 46 ETG, 43 of which are in the optically complete part of the input sample. In addition dust is present at fainter levels in another 6 ETG. We detect dust in the 4 ETG with synchrotron emission, including M 87. Dust appears to be much more concentrated than stars and more luminous ETG have higher dust temperatures. Dust detection rates down to the 25.4 mJy limit are 17% for ellipticals, about 40% for lenticulars (S0 + S0a) and around 3% for dwarf ETG. Dust mass does not correlate clearly with stellar mass and is often much more than that expected for a passive galaxy in a closed-box model. The dust-to-stars mass ratio anticorrelates with galaxy luminosity, and for some dwarf ETG reaches values as high as for dusty late-type galaxies. In the Virgo cluster slow rotators appear more likely to contain dust than fast ones. Comparing the dust results with those on HI from ALFALFA, there are only 8 ETG detected both in dust and in HI in the HeViCS area; 39 have dust but only an upper limit on HI, and 8 have HI but only an upper limit on dust. The locations of these galaxies in the cluster are different, with the dusty ETG concentrated in the densest regions, while the HI rich ETG are at the periphery.Comment: Accepted by Astronomy and Astrophysics; modified to reflect the on-line forthcoming version on the A&A web sit
    • …
    corecore