31 research outputs found

    Highly sensitive real-time PCR for specific detection and quantification of Coxiella burnetii

    Get PDF
    BACKGROUND: Coxiella burnetii, the bacterium causing Q fever, is an obligate intracellular biosafety level 3 agent. Detection and quantification of these bacteria with conventional methods is time consuming and dangerous. During the last years, several PCR based diagnostic assays were developed to detect C. burnetii DNA in cell cultures and clinical samples. We developed and evaluated TaqMan-based real-time PCR assays that targeted the singular icd (isocitrate dehydrogenase) gene and the transposase of the IS1111a element present in multiple copies in the C. burnetii genome. RESULTS: To evaluate the precision of the icd and IS1111 real-time PCR assays, we performed different PCR runs with independent DNA dilutions of the C. burnetii Nine Mile RSA493 strain. The results showed very low variability, indicating efficient reproducibility of both assays. Using probit analysis, we determined that the minimal number of genome equivalents per reaction that could be detected with a 95% probability was 10 for the icd marker and 6.5 for the IS marker. Plasmid standards with cloned icd and IS1111 fragments were used to establish standard curves which were linear over a range from 10 to 10(7 )starting plasmid copy numbers. We were able to quantify cell numbers of a diluted, heat-inactivated Coxiella isolate with a detection limit of 17 C. burnetii particles per reaction. Real-time PCR targeting both markers was performed with DNA of 75 different C. burnetii isolates originating from all over the world. Using this approach, the number of IS1111 elements in the genome of the Nine Mile strain was determined to be 23, close to 20, the number revealed by genome sequencing. In other isolates, the number of IS1111 elements varied widely (between seven and 110) and seemed to be very high in some isolates. CONCLUSION: We validated TaqMan-based real-time PCR assays targeting the icd and IS1111 markers of C. burnetii. The assays were shown to be specific, highly sensitive and efficiently reproducible. Cell numbers in dilutions of a C. burnetii isolate were reliably quantified. PCR quantification suggested a high variability of the number of IS1111 elements in different C. burnetii isolates, which may be useful for further phylogenetic studies

    Laparoscopic mesh-augmented hiatoplasty without fundoplication as a method to treat large hiatal hernias

    Get PDF
    PURPOSE: Laparoscopic hiatal hernia repair with additional fundoplication is a commonly recommended standard surgical treatment for symptomatic large hiatal hernias with paraesophageal involvement (PEH). However, due to the risk of persistent side effects, this method remains controversial. Laparoscopic mesh-augmented hiatoplasty without fundoplication (LMAH), which combines hiatal repair and mesh reinforcement, might therefore be an alternative. METHODS: In this retrospective study of 55 (25 male, 30 female) consecutive PEH patients, the perioperative course and symptomatic outcomes were analyzed after a mean follow-up of 72 months. RESULTS: The mean DeMeester symptom score decreased from 5.1 to 1.8 (P < 0.001) and the gas bloating value decreased from 1.2 to 0.5 (P = 0.001). The dysphagia value was 0.7 before surgery and 0.6 (P = 0.379) after surgery. The majority of the patients were able to belch and vomit (96 and 92 %, respectively). Acid-suppressive therapy on a regular basis was discontinued in 68 % of patients. In 4 % of patients, reoperation was necessary due to recurrent or persistent reflux. A mesh-related stenosis that required endoscopic dilatation occurred in 2 % of patients. CONCLUSIONS: LMAH is feasible, safe and provides an anti-reflux effect, even without fundoplication. As operation-related side effects seem to be rare, LMAH is a potential treatment option for large hiatal hernias with paraesophageal involvement

    One or two trainees per workplace in a structured multimodality training curriculum for laparoscopic surgery? Study protocol for a randomized controlled trial – DRKS00004675

    Get PDF
    BACKGROUND: Laparoscopy training courses have been established in many centers worldwide to ensure adequate skill learning before performing operations on patients. Different training modalities and their combinations have been compared regarding training effects. Multimodality training combines different approaches for optimal training outcome. However, no standards currently exist for the number of trainees assigned per workplace. METHODS: This is a monocentric, open, three-arm randomized controlled trial. The participants are laparoscopically-naive medical students from Heidelberg University. After a standardized introduction to laparoscopic cholecystectomy (LC) with online learning modules, the participants perform a baseline test for basic skills and LC performance on a virtual reality (VR) trainer. A total of 100 students will be randomized into three study arms, in a 2:2:1 ratio. The intervention groups participate individually (Group 1) or in pairs (Group 2) in a standardized and structured multimodality training curriculum. Basic skills are trained on the box and VR trainers. Procedural skills and LC modules are trained on the VR trainer. The control group (Group C) does not receive training between tests. A post-test is performed to reassess basic skills and LC performance on the VR trainer. The performance of a cadaveric porcine LC is then measured as the primary outcome using standardized and validated ratings by blinded experts with the Objective Structured Assessment of Technical Skills. The Global Operative Assessment of Laparoscopic Surgical skills score and the time taken for completion are used as secondary outcome measures as well as the improvement of skills and VR LC performance between baseline and post-test. Cognitive tests and questionnaires are used to identify individual factors that might exert influence on training outcome. DISCUSSION: This study aims to assess whether workplaces in laparoscopy training courses for beginners should be used by one trainee or two trainees simultaneously, by measuring the impact on operative performance and learning curves. Possible factors of influence, such as the role of observing the training partner, exchange of thoughts, active reflection, model learning, motivation, pauses, and sympathy will be explored in the data analysis. This study will help optimize the efficiency of laparoscopy training courses. TRIAL REGISTRATION NUMBER: DRKS0000467

    Global Distribution of Human-Associated Fecal Genetic Markers in Reference Samples from Six Continents

    Get PDF
    Numerous bacterial genetic markers are available for the molecular detection of human sources of fecal pollution in environmental waters. However, widespread application is hindered by a lack of knowledge regarding geographical stability, limiting implementation to a small number of well-characterized regions. This study investigates the geographic distribution of five human-associated genetic markers (HF183/BFDrev, HF183/BacR287, BacHum-UCD, BacH, and Lachno2) in municipal wastewaters (raw and treated) from 29 urban and rural wastewater treatment plants (750-4»400»000 population equivalents) from 13 countries spanning six continents. In addition, genetic markers were tested against 280 human and nonhuman fecal samples from domesticated, agricultural and wild animal sources. Findings revealed that all genetic markers are present in consistently high concentrations in raw (median log10 7.2-8.0 marker equivalents (ME) 100 mL-1) and biologically treated wastewater samples (median log10 4.6-6.0 ME 100 mL-1) regardless of location and population. The false positive rates of the various markers in nonhuman fecal samples ranged from 5% to 47%. Results suggest that several genetic markers have considerable potential for measuring human-associated contamination in polluted environmental waters. This will be helpful in water quality monitoring, pollution modeling and health risk assessment (as demonstrated by QMRAcatch) to guide target-oriented water safety management across the globe.Fil: Mayer, René E.. Vienna University of Technology; Austria. Interuniversity Cooperation Centre for Water and Health; AustriaFil: Reischer, Georg. Vienna University of Technology; AustriaFil: Ixenmaier, Simone K.. Vienna University of Technology; Austria. Interuniversity Cooperation Centre for Water and Health; AustriaFil: Derx, Julia. Vienna University of Technology; AustriaFil: Blaschke, Alfred Paul. Vienna University of Technology; AustriaFil: Ebdon, James E.. University of Brighton; Reino UnidoFil: Linke, Rita. Vienna University of Technology; Austria. Interuniversity Cooperation Centre Water And Health; AustriaFil: Egle, Lukas. Vienna University of Technology; AustriaFil: Ahmed, Warish. Csiro Land And Water; AustraliaFil: Blanch, Anicet R.. Universidad de Barcelona; EspañaFil: Byamukama, Denis. Makerere University; UgandaFil: Savill, Marion. Affordable Water Limited;Fil: Mushi, Douglas. Sokoine University Of Agriculture; TanzaniaFil: Cristobal, Hector Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; ArgentinaFil: Edge, Thomas A.. Canada Centre for Inland Waters. Environment and Climate Change Canada; CanadáFil: Schade, Margit A.. Bavarian Environment Agency; AlemaniaFil: Aslan, Asli. Georgia Southern University; Estados UnidosFil: Brooks, Yolanda M.. Michigan State University; Estados UnidosFil: Sommer, Regina. Interuniversity Cooperation Centre Water And Health; Austria. Medizinische Universitat Wien; AustriaFil: Masago, Yoshifumi. Tohoku University; JapónFil: Sato, Maria I.. Cia. Ambiental do Estado de Sao Paulo. Departamento de Análises Ambientais; BrasilFil: Taylor, Huw D.. University of Brighton; Reino UnidoFil: Rose, Joan B.. Michigan State University; Estados UnidosFil: Wuertz, Stefan. Nanyang Technological University. Singapore Centre for Environmental Life Sciences Engineering and School of Civil and Environmental Engineering; SingapurFil: Shanks, Orin. U.S. Environmental Protection Agency; Estados UnidosFil: Piringer, Harald. Vrvis Research Center; AustriaFil: Mach, Robert L.. Vienna University of Technology; AustriaFil: Savio, Domenico. Karl Landsteiner University of Health Sciences; AustriaFil: Zessner, Matthias. Vienna University of Technology; AustriaFil: Farnleitner, Andreas. Vienna University of Technology; Austria. Interuniversity Cooperation Centre Water And Health; Austria. Karl Landsteiner University of Health Sciences; Austri

    Highly sensitive real-time PCR for specific detection and quantification of -0

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Highly sensitive real-time PCR for specific detection and quantification of "</p><p>BMC Microbiology 2006;6():2-2.</p><p>Published online 19 Jan 2006</p><p>PMCID:PMC1360083.</p><p>Copyright © 2006 Klee et al; licensee BioMed Central Ltd.</p> targeting the and sequences of . With the respective targets, 10 and 6.5 genome equivalents per reaction can be detected with a probability of 95 %

    Nanolithographic Fabrication Technologies for Network-Based Biocomputation Devices

    No full text
    Network-based biocomputation (NBC) relies on accurate guiding of biological agents through nanofabricated channels produced by lithographic patterning techniques. Here, we report on the large-scale, wafer-level fabrication of optimized microfluidic channel networks (NBC networks) using electron-beam lithography as the central method. To confirm the functionality of these NBC networks, we solve an instance of a classical non-deterministic-polynomial-time complete (“NP-complete”) problem, the subset-sum problem. The propagation of cytoskeletal filaments, e.g., molecular motor-propelled microtubules or actin filaments, relies on a combination of physical and chemical guiding along the channels of an NBC network. Therefore, the nanofabricated channels have to fulfill specific requirements with respect to the biochemical treatment as well as the geometrical confienement, with walls surrounding the floors where functional molecular motors attach. We show how the material stack used for the NBC network can be optimized so that the motor-proteins attach themselves in functional form only to the floor of the channels. Further optimizations in the nanolithographic fabrication processes greatly improve the smoothness of the channel walls and floors, while optimizations in motor-protein expression and purification improve the activity of the motor proteins, and therefore, the motility of the filaments. Together, these optimizations provide us with the opportunity to increase the reliability of our NBC devices. In the future, we expect that these nanolithographic fabrication technologies will enable production of large-scale NBC networks intended to solve substantially larger combinatorial problems that are currently outside the capabilities of conventional software-based solvers
    corecore