1,530 research outputs found

    Comparison and Prediction of the above Ground Carbon Storage in Croplands on the Inhabited Slopes on Mount Kilimanjaro (Tanzania) and the Taita Hills (Kenya)

    Get PDF
    Mount Kilimanjaro and the Taita Hills are adjacent montane areas that experience similar climate and agricultural activity, but which differ in their geologic history, nature of elevation gradients and cultures. We assessed differences in cropland above ground carbon (AGC) between the two sites and against environmental variables. One hectare sampling plots were randomly distributed along elevational gradients stratified by cropland type; AGC was derived from all trees with diameter ≥ 10 cm at breast height in each plot. Predictor variables were physical and edaphic variables and human population. A generalized linear model was used for predicting AGC with AIC used for ranking models. AGC was spatially upscaled in 2 km buffer and visually compared. Kilimanjaro has higher AGC in cropped and agroforestry areas than the Taita Hills, but only significant difference in AGC variation in agroforestry areas (F = 9.36, p = 0.03). AGC in cropped land and agroforestry in Kilimanjaro has significant difference on mean (t = 4.62, p = 0.001) and variation (F = 17.41, p = 0.007). In the Taita Hills, significant difference is observed only on the mean AGC (t = 4.86, p = 0.001). Common tree species that contribute the most to AGC in Kilimanjaro are Albizia gummifera and Persea americana, and in the Taita Hills Grevillea robusta and Mangifera indica . Significant and univariate predictors of AGC in Mount Kilimanjaro are pH (R2 = 0.80, p = 0.00) and EVI (R2 = 0.68, p = 0.00). On Mount Kilimanjaro, the top multivariate model contained SOC, CEC, pH and BLD (R2 = 0.90, p = 0.00), whereas in the Taita Hills, the top multivariate model contained elevation, slope and population (R2 = 0.89, p = 0.00). Despite of the difference in land management history of Mount Kilimanjaro and the Taita Hills, mean of AGC in croplands does not differ significantly. Difference occurs on variation of AGC, type of trees contributing AGC, and environmental variables that explain AGC distribution. The research results provide reference for management of carbon sequestration on inhabited montane areas.Peer reviewe

    Complex interaction networks among cyanolichens of a tropical biodiversity hotspot

    Get PDF
    Interactions within lichen communities include, in addition to close mutualistic associations between the main partners of specific lichen symbioses, also more elusive relationships between members of a wider symbiotic community. Here, we analyze association patterns of cyanolichen symbionts in the tropical montane forests of Taita Hills, southern Kenya, which is part of the Eastern Afromontane biodiversity hotspot. The cyanolichen specimens analyzed represent 74 mycobiont taxa within the order Peltigerales (Ascomycota), associating with 115 different variants of the photobionts genus Nostoc (Cyanobacteria). Our analysis demonstrates wide sharing of photobionts and reveals the presence of several photobiont-mediated lichen guilds. Over half of all mycobionts share photobionts with other fungal species, often from different genera or even families, while some others are strict specialists and exclusively associate with a single photobiont variant. The most extensive symbiont network involves 24 different fungal species from five genera associating with 38 Nostoc photobionts. The Nostoc photobionts belong to two main groups, the Nephroma-type Nostoc and the Collema/Peltigera-type Nostoc, and nearly all mycobionts associate only with variants of one group. Among the mycobionts, species that produce cephalodia and those without symbiotic propagules tend to be most promiscuous in photobiont choice. The extent of photobiont sharing and the structure of interaction networks differ dramatically between the two major photobiont-mediated guilds, being both more prevalent and nested among Nephroma guild fungi and more compartmentalized among Peltigera guild fungi. This presumably reflects differences in the ecological characteristics and/or requirements of the two main groups of photobionts. The same two groups of Nostoc have previously been identified from many lichens in various lichen-rich ecosystems in different parts of the world, indicating that photobiont sharing between fungal species is an integral part of lichen ecology globally. In many cases, symbiotically dispersing lichens can facilitate the dispersal of sexually reproducing species, promoting establishment and adaptation into new and marginal habitats and thus driving evolutionary diversification.Peer reviewe

    An annotated checklist of vascular plants of Cherangani hills, Western Kenya

    Get PDF
    Cherangani hills, located in Western Kenya, comprises of 12 forest blocks, maintaining great plant diversity. However, little attention to plant diversity studies has been paid to it in the past years. Here, we present a checklist of the vascular plants of this region obtained through intensive field investigations and matching of herbarium specimens. In total, 1296 species, including 17 endemic species are documented, belonging to 130 families and 608 genera. This flora represents 18.50%, 43.83% and 54.17% of the Kenyan species, genera and families, respectively. The habit, habitat and voucher specimens, as well as brief notes on the distribution of each taxon recorded are presented in this checklist. It is the first exhaustive inventory of the terrestrial vascular plants in Cherangani hills which is a significant regional centre for plant diversity

    Spatial Congruence or Mismatch Between Phylogenetic and Functional Structure of Seed Plants Along a Tropical Elevational Gradient: Different Traits Have Different Patterns

    Get PDF
    Compared to species richness, few studies have investigated the patterns and relationship of phylogenetic and functional structures along elevational gradients. Here, we used the general additive models to determine the trends of taxonomic diversity (species richness, SR), phylogenetic and functional diversity (PD and FD), phylogenetic structure net relatedness index (NRI), and functional structure net functional relatedness index (NFRI) of seed plants along the elevational gradient in Mount Kenya, a tropical mountain in Africa. We measured growth form, fruit type, maximum height, and maximum leaf size of each species, calculated the phylogenetic signal of each trait, and tested the Pearson correlation coefficients between NRI and NFRI of each trait. Our results showed that SR, PD, and FD decreased gradually along the elevational gradient. NRI exhibited a fluctuating pattern along the elevational gradient, while NFRI of the four functional traits showed noticeably different patterns. We concluded that the relationship between the phylogenetic and functional structures in different functional traits could be congruent or mismatched along the elevational gradient. Compared with relatively conservative categorical traits (e.g., growth form and fruit type), continuous traits (e.g., height and leaf size) have a random or convergent evolutionary pattern. Therefore, they could be more easily affected by the environment and possibly have higher phenotypic plasticity

    Seed trichome variation in Hibiscus section Furcaria in East Africa

    No full text
    The micromorphology of the seed trichomes in Hibiscus section Furcaria in Tropical East Africa was surveyed. The structure of the trichomes was found to be unique for each species examined, where such trichomes are present. Seed trichomes of specimens of H. altissimus Horny from the Kenya and Tanzania coasts were found not to match those of the type for this species. It is considered that this is indicative of subspecific differentiation.Journal of East African Natural History Vol. 84 (1) 1995: pp. 65-7

    ONESMUS MAWEU MWANGANGI: IN MEMORIAM

    No full text

    New plant records for the K7 floral region, Kenya

    No full text
    No Abstract. Journal of East African Natural History: A Journal of Biodiversity Vol. 93(1&2) 2004: 79-8

    Emilia debilis S. Moore

    No full text
    Emilia debilis S.Moore — Habit: Herb. Habitat: LMDF; 1 500–2 800 m. Distribution: II. Voucher: West Mount Kenya Forest Station, Alt. 2 300 m, 25 Dec. 1921, Fries & Fries 302 (S, BR, UPS, BM). References: Beentje et al. (2005), Agnew (2013).Published as part of Zhou, Ya-Dong, Mwachala, Geoffrey, Hu, Guang-Wan & Wang, Qing-Feng, 2022, Annotated checklist of the vascular plants of Mount Kenya, East Africa, pp. 1-108 in Phytotaxa 546 (1) on page 93, DOI: 10.11646/phytotaxa.546.1.1, http://zenodo.org/record/655046

    Senecio lyratus Forssk.

    No full text
    Senecio lyratus Forssk. — Habit: Herb. Habitat: LMDF; up to 2 800 m. Distribution: I. Voucher: N/A. References: Bussmann (1994), Agnew (2013).Published as part of Zhou, Ya-Dong, Mwachala, Geoffrey, Hu, Guang-Wan & Wang, Qing-Feng, 2022, Annotated checklist of the vascular plants of Mount Kenya, East Africa, pp. 1-108 in Phytotaxa 546 (1) on page 96, DOI: 10.11646/phytotaxa.546.1.1, http://zenodo.org/record/655046

    Cynodon dactylon (L.) Pers.

    No full text
    Cynodon dactylon (L.) Pers. — Habit: Herb. Habitat: LMDF; up to 2 000 m. Distribution: I. Voucher: N/A. References: Fries & Fries (1926), Bussmann (1993, 1994).Published as part of Zhou, Ya-Dong, Mwachala, Geoffrey, Hu, Guang-Wan & Wang, Qing-Feng, 2022, Annotated checklist of the vascular plants of Mount Kenya, East Africa, pp. 1-108 in Phytotaxa 546 (1) on page 36, DOI: 10.11646/phytotaxa.546.1.1, http://zenodo.org/record/655046
    • …
    corecore