159 research outputs found

    Activation of adenosine A2B receptors enhances ciliary beat frequency in mouse lateral ventricle ependymal cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ependymal cells form a protective monolayer between the brain parenchyma and cerebrospinal fluid (CSF). They possess motile cilia important for directing the flow of CSF through the ventricular system. While ciliary beat frequency in airway epithelia has been extensively studied, fewer reports have looked at the mechanisms involved in regulating ciliary beat frequency in ependyma. Prior studies have demonstrated that ependymal cells express at least one purinergic receptor (P2X<sub>7</sub>). An understanding of the full range of purinergic receptors expressed by ependymal cells, however, is not yet complete. The objective of this study was to identify purinergic receptors which may be involved in regulating ciliary beat frequency in lateral ventricle ependymal cells.</p> <p>Methods</p> <p>High-speed video analysis of ciliary movement in the presence and absence of purinergic agents was performed using differential interference contrast microscopy in slices of mouse brain (total number of animals = 67). Receptor identification by this pharmacological approach was corroborated by immunocytochemistry, calcium imaging experiments, and the use of two separate lines of knockout mice.</p> <p>Results</p> <p>Ciliary beat frequency was enhanced by application of a commonly used P2X<sub>7 </sub>agonist. Subsequent experiments, however, demonstrated that this enhancement was observed in both P2X<sub>7</sub><sup>+/+ </sup>and P2X<sub>7</sub><sup>-/- </sup>mice and was reduced by pre-incubation with an ecto-5'-nucleotidase inhibitor. This suggested that enhancement was primarily due to a metabolic breakdown product acting on another purinergic receptor subtype. Further studies revealed that ciliary beat frequency enhancement was also induced by adenosine receptor agonists, and pharmacological studies revealed that ciliary beat frequency enhancement was primarily due to A<sub>2B </sub>receptor activation. A<sub>2B </sub>expression by ependymal cells was subsequently confirmed using A<sub>2B</sub><sup>-/-</sup>/ÎČ-galactosidase reporter gene knock-in mice.</p> <p>Conclusion</p> <p>This study demonstrates that A<sub>2B </sub>receptor activation enhances ciliary beat frequency in lateral ventricle ependymal cells. Ependymal cell ciliary beat frequency regulation may play an important role in cerebral fluid balance and cerebrospinal fluid dynamics.</p

    Adding value to laboratory medicine: a professional responsibility

    Get PDF
    Laboratory medicine is a medical specialty at the centre of healthcare. When used optimally laboratory medicine generates knowledge that can facilitate patient safety, improve patient outcomes, shorten patient journeys and lead to more cost-effective healthcare. Optimal use of laboratory medicine relies on dynamic and authoritative leadership outside as well as inside the laboratory. The first responsibility of the head of a clinical laboratory is to ensure the provision of a high quality service across a wide range of parameters culminating in laboratory accreditation against an international standard, such as ISO 15189. From that essential baseline the leadership of laboratory medicine at local, national and international level needs to ‘add value’ to ensure the optimal delivery, use, development and evaluation of the services provided for individuals and for groups of patients. A convenient tool to illustrate added value is use of the mnemonic ‘SCIENCE’. This tool allows added value to be considered in seven domains: standardisation and harmonisation; clinical effectiveness; innovation; evidence-based practice; novel applications; cost-effectiveness; and education of others. The assessment of added value in laboratory medicine may be considered against a framework that comprises three dimensions: operational efficiency; patient management; and patient behaviours. The profession and the patient will benefit from sharing examples of adding value to laboratory medicine

    A novel α-conotoxin, PeIA, cloned from Conus pergrandis, discriminates between Rat α9α10 and α7 nicotinic cholinergic receptors

    Get PDF
    The α9 and α10 nicotinic cholinergic subunits assemble to form the receptor believed to mediate synaptic transmission between efferent olivocochlear fibers and hair cells of the cochlea, one of the few examples of postsynaptic function for a non-muscle nicotinic acetylcholine receptor (nAChR). However, it has been suggested that the expression profile of α9 and α10 overlaps with that of α7 in the cochlea and in sites such as dorsal root ganglion neurons, peripheral blood lymphocytes, developing thymocytes, and skin. We now report the cloning, total synthesis, and characterization of a novel toxin α-conotoxin PeIA that discriminates between α9α10 and α7 nAChRs. This is the first toxin to be identified from Conus pergrandis, a species found in deep waters of the Western Pacific. α-Conotoxin PeIA displayed a 260-fold higher selectivity for α-bungarotoxin-sensitive α9α10 nAChRs compared with α-bungarotoxin-sensitive α7 receptors. The IC50 of the toxin was 6.9 ± 0.5 nM and 4.4 ± 0.5 nM for recombinant α9α10 and wild-type hair cell nAChRs, respectively. α-Conotoxin PeIA bears high resemblance to α-conotoxins MII and GIC isolated from Conus magus and Conus geographus, respectively. However, neither α-conotoxin MII nor α-conotoxin GIC at concentrations of 10 ÎŒM blocked acetylcholine responses elicited in Xenopus oocytes injected with the α9 and α10 subunits. Among neuronal non-α-bungarotoxin- sensitive receptors, α-conotoxin PeIA was also active at α3ÎČ2 receptors and chimeric α6/α3ÎČ2ÎČ3 receptors. α-Conotoxin PeIA represents a novel probe to differentiate responses mediated either through α9α10 or α7 nAChRs in those tissues where both receptors are expressed.Fil: McIntosh, J. Michael. University of Utah; Estados UnidosFil: Plazas, Paola Viviana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Investigaciones en IngenierĂ­a GenĂ©tica y BiologĂ­a Molecular "Dr. HĂ©ctor N. Torres"; ArgentinaFil: Watkins, Maren. University of Utah; Estados UnidosFil: Gomez Casati, Maria Eugenia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Investigaciones en IngenierĂ­a GenĂ©tica y BiologĂ­a Molecular "Dr. HĂ©ctor N. Torres"; ArgentinaFil: Olivera, Baldomero M.. University of Utah; Estados UnidosFil: Elgoyhen, Ana Belen. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Investigaciones en IngenierĂ­a GenĂ©tica y BiologĂ­a Molecular "Dr. HĂ©ctor N. Torres"; Argentin

    Molecular and functional properties of P2X receptors—recent progress and persisting challenges

    Full text link

    Salmonella

    No full text

    PHARMACOLOGICAL ASPECTS OF NEWER DRUGS USED IN ANTICOAGULANT THERAPY

    No full text
    • 

    corecore