70 research outputs found

    New Concepts in Oxidation Processes

    Get PDF
    This Special Issue of Catalysts aims to cover the recent progress and novel trends in the field of catalytic oxidation reaction. Topics addressed in this special issue concern the influence of different parameters on catalytic activity at various scales (atomic, laboratory, pilot, or industrial scales), the development of new catalytic materials of environmental or industrial importance, as well as the development of new methods, both microscopic and spectroscopic, to analyze oxidation processes

    Perspectives on Low Temperature Tolerance and Vernalization Sensitivity in Barley: Prospects for Facultative Growth Habit

    Get PDF
    One option to achieving greater resiliency for barley production in the face of climate change is to explore the potential of winter and facultative growth habits: for both types, low temperature tolerance (LTT) and vernalization sensitivity are key traits. Sensitivity to short-day photoperiod is a desirable attribute for facultative types. In order to broaden our understanding of the genetics of these phenotypes, we mapped quantitative trait loci (QTLs) and identified candidate genes using a genome-wide association studies (GWAS) panel composed of 882 barley accessions that was genotyped with the Illumina 9K single-nucleotide polymorphism (SNP) chip. Fifteen loci including 5 known and 10 novel QTL/genes were identified for LTT—assessed as winter survival in 10 field tests and mapped using a GWAS meta-analysis. FR-H1, FR-H2, and FR-H3 were major drivers of LTT, and candidate genes were identified for FR-H3. The principal determinants of vernalization sensitivity were VRN-H1, VRN-H2, and PPD-H1. VRN-H2 deletions conferred insensitive or intermediate sensitivity to vernalization. A subset of accessions with maximum LTT were identified as a resource for allele mining and further characterization. Facultative types comprised a small portion of the GWAS panel but may be useful for developing germplasm with this growth habit

    Perspectives on Low Temperature Tolerance and Vernalization Sensitivity in Barley: Prospects for Facultative Growth Habit

    Get PDF
    15 Pags.- 5 Figs.- 3 TAbls.- Supp. Mat. Copyright Owner, the Authors. Under LicenceCC BY 4.0.One option to achieving greater resiliency for barley production in the face of climate change is to explore the potential of winter and facultative growth habits: for both types, low temperature tolerance (LTT) and vernalization sensitivity are key traits. Sensitivity to short-day photoperiod is a desirable attribute for facultative types. In order to broaden our understanding of the genetics of these phenotypes, we mapped quantitative trait loci (QTLs) and identified candidate genes using a genome-wide association studies (GWAS) panel composed of 882 barley accessions that was genotyped with the Illumina 9K single-nucleotide polymorphism (SNP) chip. Fifteen loci including 5 known and 10 novel QTL/genes were identified for LTT—assessed as winter survival in 10 field tests and mapped using a GWAS meta-analysis. FR-H1, FR-H2, and FR-H3 were major drivers of LTT, and candidate genes were identified for FR-H3. The principal determinants of vernalization sensitivity were VRN-H1, VRN-H2, and PPD-H1. VRN-H2 deletions conferred insensitive or intermediate sensitivity to vernalization. A subset of accessions with maximum LTT were identified as a resource for allele mining and further characterization. Facultative types comprised a small portion of the GWAS panel but may be useful for developing germplasm with this growth habit.Support was provided by the USDA-NIFA TCAP Project no. 2011-68002-30029.Peer reviewe

    Editorial: Special Issue “New Concepts in Oxidation Processes”

    No full text
    Oxidation processes, as part of the catalysis field, play a significant role in both industrial chemistry and environmental protection [...

    Catalysator element comprised of a mixed metal oxide hydrotacite-like compound

    No full text
    The present invention relates to a catalysator element comprising a mixed metal oxide compound for conversion of nitrogen oxides (NOx). The present invention further relates to methods for the preparation of the present mixed metal oxide compound for use in the present catalysator element and to exhaust systems for a combustion engine comprising the present catalysator element for conversion of (NOx) in exhaust gasses. Specifically, the present invention relates to a catalysator element for conversion of nitrogen oxides (NOx) comprised of a solid support coated with a calcined mixed metal oxide hydrotalcite-like compound, wherein said calcined mixed metal oxide hydrotalcite-like compound comprises at least one bivalent metal (M2+) and at least one trivalent metal (M3+).info:eu-repo/semantics/publishe

    GaSb-based mid-IR electrically-pumped VCSELs covering the wavelength range from 2.3 to 2.7 µm

    No full text
    International audienceMid-infrared laser diodes are highly attractive sources for gas spectroscopy applications due to the presence of strong absorption lines of many gaseous species in this spectral range. Particularly, the 2.3 – 3.3 µm wavelength range contains strong absorption lines of some pollutants as CH4, NH3 or HF while CO2 and H2O interference absorption lines are very low which renders possible the highly selective and sensitive detection of these pollutants. Vertical-cavity surface-emitting lasers (VCSELs) appear especially well adapted to be used as laser sources for absorption spectroscopy due to several intrinsic characteristics that they offer. The low threshold, single-mode operation, the circular output beam with low divergence are only some of their well-known advantages

    Mid-Infrared GaSb-based EP-VCSEL emitting at 2.63 µm

    No full text
    International audienceElectrically-pumped GaSb-based vertical-cavity surface-emitting lasers emitting up to 2.63 µm at room temperature are reported. The whole structure was grown monolithically in one run by solid-source molecular beam epitaxy. This heterostructure is composed of two n-doped AlAsSb/GaSb DBRs, a type-I GaInAsSb/AlGaAsSb multi-quantum-well active region and an InAsSb/GaSb tunnel junction. A quasi-CW (1 µs, 5 %) operation was obtained at room temperature for 35 µm-diameter devices with threshold current of 85 mA

    Dynamic processes on gold-based catalysts followed by environmental microscopies

    No full text
    Since the early discovery of the catalytic activity of gold at low temperature, there has been a growing interest in Au and Au-based catalysis for a new class of applications. The complexity of the catalysts currently used ranges from single crystal to 3D structured materials. To improve the efficiency of such catalysts, a better understanding of the catalytic process is required, from both the kinetic and material viewpoints. The understanding of such processes can be achieved using environmental imaging techniques allowing the observation of catalytic processes under reaction conditions, so as to study the systems in conditions as close as possible to industrial conditions. This review focuses on the description of catalytic processes occurring on Au-based catalysts with selected in situ imaging techniques, i.e. PEEM/LEEM, FIM/FEM and E-TEM, allowing a wide range of pressure and material complexity to be covered. These techniques, among others, are applied to unravel the presence of spatiotemporal behaviours, study mass transport and phase separation, determine activation energies of elementary steps, observe the morphological changes of supported nanoparticles, and finally correlate the surface composition with the catalytic reactivity.SCOPUS: re.jinfo:eu-repo/semantics/publishe

    Dry reforming of methane via plasma-catalysis: influence of the catalyst nature supported on alumina in a packed-bed DBD configuration

    No full text
    These days, the consideration of CO2 as a feedstock has become the subject of more interest. The reutilization of CO2 is already possible via cold plasma techniques operating at atmospheric pressure. A promising technology is the dielectric barrier discharge (DBD). In most cases DBDs exhibit a low energy efficiency for CO2 conversion. However, several routes can be used to increase this efficiency and hence, the product formation. One of these routes is the packed-bed DBD configuration with porous beads inside the gap of the DBD, which also allows the coupling of plasma with catalysis. Catalysts can be introduced in such a configuration to exploit the synergistic effect between plasma and catalytically active surfaces, leading to a more efficient process. In this article, the dry reforming of methane (DRM) is studied, which aims to convert both CO2 and CH4, another greenhouse gas, at the same time. The conversions and energy costs of the DRM process are investigated and compared in both the packed-bed DBD configurations containing catalysts (Co, Cu or Ni) and the classical DBD. The change in filamentary behavior is studied in detail and correlated with the obtained conversions using gas chromatography, mass spectrometry and using an oscilloscope. A characterization of the catalysts on the beads is also carried out. Both the CO2 and CH4 conversions are clearly increased with the plasma-catalysis. Moreover, CH4 conversions as high as 90% can be obtained in certain conditions with copper catalysts.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    • …
    corecore