697 research outputs found
Synthesis and Analysis of the Conformational Preferences of 5-Aminomethyloxazolidine-2,4-dione Scaffolds: First Examples of \u3b22- and \u3b22, 2-Homo-Freidinger Lactam Analogues
Constrained peptidomimetic scaffolds are of considerable interest for the design of therapeutically useful analogues of bioactive peptides. We present the single-step cyclization of (S)- or (R)-\u3b1-hydroxy-\u3b22- or \u3b1-substituted-\u3b1-hydroxy-\u3b22, 2-amino acids already incorporated within oligopeptides to 5-aminomethyl-oxazolidine-2,4-dione (Amo) rings. These scaffolds can be regarded as unprecedented \u3b22- or \u3b22, 2-homo-Freidinger lactam analogues, and can be equipped with a proteinogenic side chain at each residue. In a biomimetic environment, Amo rings act as inducers of extended, semi-bent or folded geometries, depending on the relative stereochemistry and the presence of \u3b1-substituents
Do Postures of Distal Effectors Affect the Control of Actions of Other Distal Effectors? Evidence for a System of Interactions between Hand and Mouth
The present study aimed at determining whether, in healthy humans, postures assumed by distal effectors affect the control of the successive grasp executed with other distal effectors. In experiments 1 and 2, participants reached different objects with their head and grasped them with their mouth, after assuming different hand postures. The postures could be implicitly associated with interactions with large or small objects. The kinematics of lip shaping during grasp varied congruently with the hand posture, i.e. it was larger or smaller when it could be associated with the grasping of large or small objects, respectively. In experiments 3 and 4, participants reached and grasped different objects with their hand, after assuming the postures of mouth aperture or closure (experiment 3) and the postures of toe extension or flexion (experiment 4). The mouth postures affected the kinematics of finger shaping during grasp, that is larger finger shaping corresponded with opened mouth and smaller finger shaping with closed mouth. In contrast, the foot postures did not influence the hand grasp kinematics. Finally, in experiment 5 participants reached-grasped different objects with their hand while pronouncing opened and closed vowels, as verified by the analysis of their vocal spectra. Open and closed vowels induced larger and smaller finger shaping, respectively. In all experiments postures of the distal effectors induced no effect, or only unspecific effects on the kinematics of the reach proximal/axial component. The data from the present study support the hypothesis that there exists a system involved in establishing interactions between movements and postures of hand and mouth. This system might have been used to transfer a repertoire of hand gestures to mouth articulation postures during language evolution and, in modern humans, it may have evolved a system controlling the interactions existing between speech and gestures
Opioid activity profiles of oversimplified peptides lacking in the protonable N-terminus
Recently, we described cyclopeptide opioid agonists containing the D-Trp-Phe sequence. To expand the scope of this atypical pharmacophore, we tested the activity profiles of the linear peptides Ac-Xaa-Phe-Yaa (Xaa = L/D-Trp, D-His/Lys/Arg; Yaa = H, GlyNH2). Ac-D-Trp-PheNH2 appeared to be the minimal binding sequence, while Ac-D-Trp-Phe-GlyNH 2 emerged as the first noncationizable short peptide (partial) agonist with high \u3bc-opioid receptor affinity and selectivity. Conformational analysis suggested that 5 adopts in solution a \u3b2-turn conformation. \ua9 2012 American Chemical Society
Expedient synthesis of pseudo-Pro-containing peptides: Towards constrained peptidomimetics and foldamers
The reaction of sulfonyl peptides containing l- or d-configured Ser or Thr with bis(succinimidyl) carbonate in the presence of a catalytic amount of a base affords, in solution or in the solid phase, the corresponding peptides with one or two, consecutive or alternate oxazolidin-2-ones (Oxd). The Oxd ring can be regarded to as a pseudo-Pro with an exclusively trans conformation of the preceding peptide bond; homochiral Oxd-containing peptides adopt extended conformations, while the presence of a d-configured Oxd favours folded conformations. © The Royal Society of Chemistry 2012
Liver involvement in the course of thymoma-associated multiorgan autoimmunity: The first histological description
Thymoma-associated multiorgan autoimmunity (TAMA) is a rare paraneoplastic syndrome described in patients with thymoma and characterized by multiorgan failure and graft-versus-host disease (GVHD) like pathology affecting the skin, the gastrointestinal tract, and the liver. To date, only 21 cases are reported in literature [1], with some patients presenting gastrointestinal and hepatic manifestations, mainly colitis, diarrhea, and abnormal liver enzymes, but the hepatic involvement has not been histologically characterized yet. In the present study, we describe for the first time that liver involvement in a patient affected by TAMA resembles GVHD
In-Peptide Synthesis of Imidazolidin-2-one Scaffolds, Equippable with Proteinogenic or Taggable/Linkable Side Chains, General Promoters of Unusual Secondary Structures
Peptidomimetics containing (S)- or (R)-imidazolidin-2-one-4- carboxylate (Imi) have been obtained by the expedient in-peptide cyclization of (S)- or (R)-\u3b1,\u3b2-diaminopropionic acid (Dap) residues. These Imi scaffolds behave as proline analogues characterized by a flat structure and a transrestricted geometry of the preceding peptide bond and induce well-defined secondary structures in a biomimetic environment. While (S)-Imi peptides adopted a \u3b3\u2032-turn conformation, (R)-Imi induced the contemporary formation of a \u3b3-turn and a rare 11-membered H-bonded structure in the 2\u21924 opposite direction of the sequence, identified as a \u3b5-turn. In order to exploit these Imi scaffolds as general promoters of unusual secondary structures, proteinaceous side chains have been introduced at the N1 position of the five-membered ring, potentially mimicking any residues. Finally, the Imi rings have been equipped with unnatural side chains or with functionalized substituents, which can be utilized as linkers to chemoselectively bind the Imi-peptides onto nanoparticles, biomaterials, or diagnostic probes
In-peptide synthesis of di-oxazolidinone and dehydroamino acid-oxazolidinone motifs as \u3b2-turn inducers
Small and easy-to-do mimetics of \u3b2-turns are of great interest to interfere with protein-protein recognition events mediated by \u3b2-turn recognition motifs. We propose a straightforward procedure for constraining the conformation of tetrapeptides lacking a pre-formed scaffold. According to the stereochemistry array, N-Ts tetrapeptides including Thr or PhSer (phenylserine) at the positions 2 or 3 gave rise in a single step to the sequences Oxd 2-Oxd3 or \u394Abu2-Oxd3 (Oxd, oxazolidin-2-one; \u394Abu, 2,3-dehydro-2-aminobutyric). These pseudo-Pro residues displayed highly constrained, and \u3c7 dihedral angles, and induced clear \u3b2-turns or inverse turns of type I or II, as determined by extensive spectroscopic and computational analyses. \ua9 The Royal Society of Chemistry 2013
Analysis of Snow Cover in the Sibillini Mountains in Central Italy
Research on solid precipitation and snow cover, especially in mountainous areas, suffers from problems related to the lack of on-site observations and the low reliability of measurements, which is often due to instruments that are not suitable for the environmental conditions. In this context, the study area is the Monti Sibillini National Park, and it is no exception, as it is a mountainous area located in central Italy, where the measurements are scarce and fragmented. The purpose of this research is to provide a characterization of the snow cover with regard to maximum annual snow depth, average snow depth during the snowy period, and days with snow cover on the ground in the Monti Sibillini National Park area, by means of ground weather stations, and also analyzing any trends over the last 30 years. For this research, in order to obtain reliable snow cover data, only data from weather stations equipped with a sonar system and manual weather stations, where the surveyor goes to the site each morning and checks the thickness of the snowpack and records, it were collected. The data were collected from 1 November to 30 April each year for 30 years, from 1991 to 2020; six weather stations were taken into account, while four more were added as of 1 January 2010. The longer period was used to assess possible ongoing trends, which proved to be very heterogeneous in the results, predominantly negative in the case of days with snow cover on the ground, while trends were predominantly positive for maximum annual snow depth and distributed between positive and negative for the average annual snow depth. The shorter period, 2010–2022, on the other hand, ensured the presence of a larger number of weather stations and was used to assess the correlation and presence of clusters between the various weather stations and, consequently, in the study area. Furthermore, in this way, an up-to-date nivometric classification of the study area was obtained (in terms of days with snow on the ground, maximum height of snowpack, and average height of snowpack), filling a gap where there had been no nivometric study in the aforementioned area. The interpolations were processed using geostatistical techniques such as co-kriging with altitude as an independent variable, allowing fairly precise spatialization, analyzing the results of cross-validation. This analysis could be a useful tool for hydrological modeling of the area, as well as having a clear use related to tourism and vegetation, which is extremely influenced by the nivometric variables in its phenology. In addition, this analysis could also be considered a starting point for the calibration of more recent satellite products dedicated to snow cover detection, in order to further improve the compiled climate characterizatio
Modern role of magnetic resonance and spectroscopy in the imaging of prostate cancer
Recently, a large number of studies have shown that the addition of proton 1H-spectroscopic imaging (1H-MRSI) and dynamic contrast enhanced imaging (DCEMR) to magnetic resonance (MR) could represent a powerful tool for the management of prostate cancer (CaP) in most of its aspects. This combination of MR techniques can substantially sustain the clinical management of patients with CaP at different levels: in particular, (1) in the initial assessment, reducing the need for more extensive biopsies and directing targeted biopsies; (2) in the definition of a biochemical progression after primary therapies, distinguishing between fibrotic reaction and local recurrence from CaP. (C) 2011 Elsevier Inc. All rights reserved
Functional Selectivity and Antinociceptive Effects of a Novel KOPr Agonist
Kappa opioid receptor (KOPr) agonists represent alternative analgesics for their low abuse potential, although relevant adverse effects have limited their clinical use. Functionally selective KOPr agonists may activate, in a pathway-specific manner, G protein-mediated signaling, that produces antinociception, over \u3b2-arrestin 2-dependent induction of p38MAPK, which preferentially contributes to adverse effects. Thus, functionally selective KOPr agonists biased toward G protein-coupled intracellular signaling over \u3b2-arrestin-2-mediated pathways may be considered candidate therapeutics possibly devoid of many of the typical adverse effects elicited by classic KOPr agonists. Nonetheless, the potential utility of functionally selective agonists at opioid receptors is still highly debated; therefore, further studies are necessary to fully understand whether it will be possible to develop more effective and safer analgesics by exploiting functional selectivity at KOPr. In the present study we investigated in vitro functional selectivity and in vivo antinociceptive effects of LOR17, a novel KOPr selective peptidic agonist that we synthesized. LOR17-mediated effects on adenylyl cyclase inhibition, ERK1/2, p38MAPK phosphorylation, and astrocyte cell proliferation were studied in HEK-293 cells expressing hKOPr, U87-MG glioblastoma cells, and primary human astrocytes; biased agonism was investigated via cAMP ELISA and \u3b2-arrestin 2 recruitment assays. Antinociception and antihypersensitivity were assessed in mice via warm-water tail-withdrawal test, intraperitoneal acid-induced writhing, and a model of oxaliplatin-induced neuropathic cold hypersensitivity. Effects of LOR17 on locomotor activity, exploratory activity, and forced-swim behavior were also assayed. We found that LOR17 is a selective, G protein biased KOPr agonist that inhibits adenylyl cyclase and activates early-phase ERK1/2 phosphorylation. Conversely to classic KOPr agonists as U50,488, LOR17 neither induces p38MAPK phosphorylation nor increases KOPr-dependent, p38MAPK-mediated cell proliferation in astrocytes. Moreover, LOR17 counteracts, in a concentration-dependent manner, U50,488-induced p38MAPK phosphorylation and astrocyte cell proliferation. Both U50,488 and LOR17 display potent antinociception in models of acute nociception, whereas LOR17 counteracts oxaliplatin-induced thermal hypersensitivity better than U50,488, and it is effective after single or repeated s.c. administration. LOR17 administered at a dose that fully alleviated oxaliplatin-induced thermal hypersensitivity did not alter motor coordination, locomotor and exploratory activities nor induced pro-depressant-like behavior. LOR17, therefore, may emerge as a novel KOPr agonist displaying functional selectivity toward G protein signaling and eliciting antinociceptive/antihypersensitivity effects in different animal models, including oxaliplatin-induced neuropathy
- …