7,171 research outputs found

    Results of TC-1 boost pump icing tests in the space power facility

    Get PDF
    A series of tests were conducted in the space power facility to investigate the failure of the Centaur oxidizer boost pump during the Titan/Centaur proof flight February 11, 1974. The three basic objectives of the tests were: (1) demonstrate if an evaporative freezing type failure mechanism could have prevented the pump from operating, (2) determine if steam from the exhaust of one of the attitude control engine could have entered a pump seal cavity and caused the failure, and (3) obtain data on the heating effects of the exhaust plume from a hydrogen peroxide attitude control engine

    Fermionic Corrections to Fluid Dynamics from BTZ Black Hole

    Full text link
    We reconstruct the complete fermionic orbit of the non-extremal BTZ black hole by acting with finite supersymmetry transformations. The solution satisfies the exact supergravity equations of motion to all orders in the fermonic expansion and the final result is given in terms of fermionic bilinears. By fluid/gravity correspondence, we derive linearized Navier-Stokes equations and a set of new differential equations from Rarita-Schwinger equation. We compute the boundary energy-momentum tensor and we interpret the result as a perfect fluid with a modified definition of fluid velocity. Finally, we derive the modified expression for the entropy of the black hole in terms of the fermionic bilinears.Comment: 21 pages, Latex2e, no figure

    Fermionic Wigs for BTZ Black Holes

    Full text link
    We compute the wig for the BTZ black hole, namely the complete non-linear solution of supergravity equations with all fermionic zero modes. We use a "gauge completion" method starting from AdS_3 Killing spinors to generate the gravitinos fields associated to the BH and we compute the back-reaction on the metric. Due to the anticommutative properties of the fermionic hairs the resummation of these effects truncates at some order. We illustrate the technique proposed in a precedent paper in a very explicit and analytical form. We also compute the mass, the angular momentum and other charges with their corrections.Comment: 11 pages, no figure

    Modified gravity models and the central cusp of dark matter haloes in galaxies

    Get PDF
    The N-body dark matter (DM) simulations point that DM density profiles, e.g. the Navarro Frenk White (NFW) halo, should be cuspy in its centre, but observations disfavour this kind of DM profile. Here we consider whether the observed rotation curves close to the galactic centre can favour modified gravity models in comparison to the NFW halo, and how to quantify such difference. Two explicit modified gravity models are considered, Modified Newtonian Dynamics (MOND) and a more recent approach renormalization group effects in general relativity (RGGR). It is also the purpose of this work to significantly extend the sample on which RGGR has been tested in comparison to other approaches. By analysing 62 galaxies from five samples, we find that (i) there is a radius, given by half the disc scale length, below which RGGR and MOND can match the data about as well or better than NFW, albeit the formers have fewer free parameters; (ii) considering the complete rotation curve data, RGGR could achieve fits with better agreement than MOND, and almost as good as a NFW halo with two free parameters (NFW and RGGR have, respectively, two and one more free parameters than MOND)

    The use of the McIlwain L-parameter to estimate cosmic ray vertical cutoff rigidities for different epochs of the geomagnetic field

    Get PDF
    Secular changes in the geomagnetic field between 1955 and 1980 have been large enough to produce significant differences in both the verical cutoff rigidities and in the L-value for a specified position. A useful relationship employing the McIlwain L-parameter to estimate vertical cutoff rigidities has been derived for the twenty-five year period

    Fermions, Wigs, and Attractors

    Get PDF
    We compute the modifications to the attractor mechanism due to fermionic corrections. In N=2, D=4 supergravity, at the fourth order, we find a new contribution to the horizon values of the scalar fields of the vector multiplets.Comment: v2 : 1+11 pages; paper reorganized in Sections; Sec. 5 added, with detailed treatment of the axion-dilaton model; some typos fixed and references adde

    Simulating interacting multiple natural-hazard events for lifecycle consequence analysis

    Get PDF
    Among different types of natural-hazard interactions (simply multi-hazard interactions hereinafter), some occur through the nature of the hazards themselves, regardless of the presence of any physical assets: they are often called モLevel Iヤ (or occurrence) interactions. In such cases, one hazard event triggers or modifies the occurrence of another (e.g., severe wind and flooding; liquefaction and landslides triggered by an earthquake), thus creating a dependency between the parameters characterising such hazard events. They differ from モLevel IIヤ (or consequence) interactions, which instead occur through impacts/consequences on physical assets/components and systems (e.g., accumulation of physical damage or social impact due to earthquake sequences, landslides due to the earthquake-induced collapse of a retaining structure). Multi-hazard Life Cycle Analysis (LCA) aims to quantify the consequences (e.g., repair costs, downtime, and casualty rates) expected throughout a systemメs service life, accounting for both Level I and Level II interactions. Nevertheless, the available literature generally considers these interactions mainly defining relevant taxonomies, often qualitatively, without providing a computational framework to simulate a sequence of hazard events in terms of their occurrence times and features and resulting consequences. This paper aims to partly fill this gap by identifying modelling approaches associated with different Level I interactions. It describes a simulation-based approach for generating multi-hazard scenarios (i.e., a sequence of hazard events and associated features through the systemメs life cycle) based on the theory of competing Poisson processes. The proposed approach incorporates the different types of interactions in a sequential Monte Carlo sampling method. The method outputs potential sequences of events throughout a systemメs life cycle, which can be integrated into LCA frameworks to quantify interacting hazard consequences. A simple application is presented to illustrate the potential of the proposed method.

    The Herschel exploitation of local galaxy Andromeda (HELGA) V: Strengthening the case for substantial interstellar grain growth

    Get PDF
    In this paper we consider the implications of the distributions of dust and metals in the disc of M31. We derive mean radial dust distributions using a dust map created from Herschel images of M31 sampling the entire far-infrared (FIR) peak. Modified blackbodies are fit to approximately 4000 pixels with a varying, as well as a fixed, dust emissivity index (beta). An overall metal distribution is also derived using data collected from the literature. We use a simple analytical model of the evolution of the dust in a galaxy with dust contributed by stellar sources and interstellar grain growth, and fit this model to the radial dust-to-metals distribution across the galaxy. Our analysis shows that the dust-to-gas gradient in M31 is steeper than the metallicity gradient, suggesting interstellar dust growth is (or has been) important in M31. We argue that M31 helps build a case for cosmic dust in galaxies being the result of substantial interstellar grain growth, while the net dust production from stars may be limited. We note, however, that the efficiency of dust production in stars, e.g., in supernovae (SNe) ejecta and/or stellar atmospheres, and grain destruction in the interstellar medium (ISM) may be degenerate in our simple model. We can conclude that interstellar grain growth by accretion is likely at least as important as stellar dust production channels in building the cosmic dust component in M31.Comment: 12 pages, 7 figures. Published in MNRAS 444, 797. This version is updated to match the published versio

    Energy-based procedures for seismic fragility analysis of mainshock-damaged buildings

    Get PDF
    In recent decades, significant research efforts have been devoted to developing fragility and vulnerability models for mainshock-damaged buildings, i.e., depending on the attained damage state after a mainshock ground motion (state-dependent fragility/vulnerability relationships). Displacement-based peak quantities, such as the maximum interstory drift ratio, are widely adopted in fragility analysis to define both engineering demands and structural capacities at the global and/or local levels. However, when considering ground-motion sequences, the use of peak quantities may lead to statistical inconsistencies (e.g., fragility curves’ crossings) due to inadequate consideration of damage accumulation. In this context, energy-based engineering demand parameters (EDPs), explicitly accounting for cumulative damage, can help address this issue. This paper provides an overview of recent findings on the development of aftershock-fragility models of mainshock-damaged buildings. Particular focus is given to state-of-the-art frameworks for fragility analyses based on cumulative damage parameters. Moreover, a literature review on damage indices and energy-based concepts and approaches in earthquake engineering is reported to better understand the main advantages of the mostly adopted energy-based parameters, as well as their limitations. Different refinement levels of seismic response analyses to derive fragility relationships of mainshock-damaged buildings are also discussed. Finally, the benefits of adopting energy-based EDPs rather than, or in addition to, peak quantities in state-dependent fragility analyses are demonstrated on a reinforced concrete frame building. Specifically, a refined lumped plasticity modeling approach is adopted, and sequential cloud-based time-history analyses of a Multi-Degree-of-Freedom (MDoF) model are carried out. The results highlight that energy-based approaches for fragility analysis effectively capture damage accumulation during earthquake sequences without inconsistencies in the obtained statistical models. On the other hand, estimating global or local structural capacity in terms of cumulative EDPs is still challenging. Further experimental data are needed to better calibrate the quantification of energy-based damaged states

    Impact of ground-motion duration on nonlinear structural performance: Part I: spectrally equivalent records and inelastic single-degree-of-freedom systems

    Get PDF
    In current seismic performance-based assessment approaches, nonlinear dynamic analysis of structures generally relies on ground motions selected based on their pseudo-spectral accelerations, with little or no consideration for ground-motion duration. Part I of this study, presented in this article, attempts to comprehensively quantify the impact of ground-motion duration on the nonlinear structural performance of case-study inelastic single-degree-of-freedom systems for shallow-crustal seismicity conditions. The effect of duration is decoupled from that of ground-motion amplitude and spectral shape by assembling sets of spectrally equivalent long- and short-duration records. Such sets are employed in incremental dynamic analyses of a wide range of computational models incorporating in-cycle and cyclic strength and stiffness deterioration. The structural response is quantified in terms of peak- and cumulative-based engineering demand parameters. Formal hypothesis testing is used to assess the statistical significance of duration’s impact on the median structural capacity of the considered structural systems. Furthermore, the derivation of duration-dependent fragility and vulnerability relationships demonstrates that ground-motion duration effectively impacts the nonlinear structural performance of various systems, and it should be accounted for in current practice. The fragility median values for highly deteriorating structural systems under long-duration ground motions are found to be up to 21% or 34.0% smaller than the short-duration counterpart if a peak- or cumulative-based engineering demand parameter is adopted, respectively
    • …
    corecore