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1. Introduction

The remarkable Schwarzschild solution to Einstein equations is
the first example of exact solution in general relativity. Since then,
several interesting solutions have been constructed with different
properties, and a number of theorems for black hole geometries
have been proved. The search for new solutions lived a new Re-
naissance with the discovery of supergravity: within this theory,
Einstein equations are just a sector of a broader framework, con-
taining fermions and new matter fields. The latter are sources of
the gravitational field, but they are not generic since their inter-
actions are controlled by supersymmetry. Consequently, for such
matter-gravity systems, new (BPS) solutions can be constructed,
since second-order partial–differential Einstein equations are re-
placed by first-order ones, thus easier to solve. In that context,
the solution to supergravity equations of motion is generically con-
structed by setting to zero all fermions, while the bosonic fields ac-
quire non-vanishing v.e.v.’s.

For extremal black hole solutions, the attractor mechanism [1]
has been discovered; essentially, it states that the solution com-
puted at the horizon depends only upon the conserved charges of
the system, and it is independent of the value of the matter fields
at infinity. This is related to the no-hair theorem, under which, for
example, a BPS black hole solution depends only upon its mass, its

* Corresponding author.
E-mail addresses: lgentile@pd.infn.it (L.G.C. Gentile), pgrassi@mfn.unipmn.it

(P.A. Grassi), alessio.marrani@fys.kuleuven.be (A. Marrani),
andrea.mezzalira@ulb.ac.be (A. Mezzalira).
http://dx.doi.org/10.1016/j.physletb.2014.03.046
0370-2693/© 2014 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
angular momentum and other conserved charges. At the dawn of
these studies, some authors [2] posed the question whether the at-
tractor mechanism has to be modified in the presence of fermions.
Their conclusion was that, at the level of approximation of their
computations, in the case of double-extremal BPS solutions, the
mechanism is unchanged. At the same time, [3] investigated a sim-
ilar issue for N = 2, D = 5 AdS-black holes, and they found that
the solution, as well as its asymptotic charges, is modified at the
first order due to fermionic contributions (even though they did
not study the attractor mechanism nor its possible modifications).

All these studies followed the seminal paper by Aichelburg
and Embacher [4], in which they started from a N = 2, D = 4
asymptotically flat black hole solution and computed iteratively
the supersymmetric variations of the background in terms of the
flat-space Killing spinors. Due to the Grassmannian nature of the
fermions, this procedure ends up after a finite number of itera-
tions, and the complete solution can be constructed. In terms of
the latter, the modifications to the asymptotic charges were com-
puted in [4]. However, once again, the attractor mechanism was
not investigated.

Recently, some of the authors of the present investigation ad-
dressed the same question starting from a different perspective,
namely the AdS/CFT correspondence between AdS black holes and
strongly-interacting fluids on the AdS boundary. They provided the
complete fermionic solution (wig) to non-extremal black holes in
several dimensions [5].

Here, we present a complete computation of the fermionic cor-
rections to static, spherically symmetric, asymptotically flat, dyonic,
BPS double-extremal black holes of N = 2, D = 4 supergravity. Dif-
ferently from [2], we find that the scalar fields acquire a non-trivial
under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by
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contribution at the fourth order of the fermionic expansion, lead-
ing to a non-trivial modification of the attractor mechanism.

We would like to point out that we compute the wigging by
performing a perturbation of the unwigged purely bosonic (double)
extremal BPS extremal black hole solution; thus, within this ap-
proximation, we consider quantities like the radius of the event
horizon unchanged. The complete analysis, including the study of
the fully-backreacted wigged black hole metric, will be presented
elsewhere [6].

The plan of the paper is as follows.
In Section 2 we introduce the simplest class of models of

N = 2, D = 4 Einstein ungauged supergravity coupled to Abelian
vector multiplets, namely the so-called minimally coupled class.

The wigging correction of all fields in the gravity and vector
multiplets is then computed in Section 3, and the modification of
the attractor mechanism at the event horizon of the BPS double-
extremal black hole solution is derived in Section 4.

Within the aforementioned approximation (i.e., disregarding
the backreaction), the simplest example, namely the axion-dilaton
model and its wigging, is studied in some detail in Section 5.

The final Section 6 gives an outlook and mentions various fur-
ther future developments.

2. Minimally Coupled Maxwell–Einstein N = 2 supergravity

Namely, we consider n Abelian vector multiplets minimally cou-
pled to the N = 2, D = 4 gravity multiplet [7], in absence of gaug-
ing and hypermultiplets. The complex scalar fields from the vector
multiplets coordinatize a class of symmetric special Kähler man-
ifolds, namely the non-compact complex projective spaces CP

n ,
characterized by the vanishing of the so-called C-tensor Cijk of
special Kähler geometry (cf. e.g. [8], as well as [9], and references
therein). In turn, this implies the Riemann tensor to enjoy the fol-
lowing expression in terms of the metric of the non-linear sigma
model (i = 1, . . . ,n):

Cijk = 0 ⇒ Ri jkl̄ = −gi j gkl̄ − gil̄ gk j. (1)

At least among the cases with symmetric scalar manifolds, mini-
mally coupled models are the only ones that admit “pure” super-
gravity by simply setting n = 0.

By virtue of (1), minimally coupled models exhibit simple prop-
erties, allowing for an explicit study of various solutions to the
equations of motion.1

This class of models can be seen as describing a multi-dilaton
system [20]; note, however, that they cannot be uplifted to D = 5
(see e.g. [11]), nor they can be obtained by standard Calabi–Yau
compactifications.

The case of only one vector multiplet (n = 1) corresponds in-
deed to the so-called axion-dilaton system of N = 2 supergravity.
This will be treated in some detail in Section 5.

Within this class, remarkable simplifications take place in the
supersymmetry transformations, which are reported below; the
treatment of more general models will be presented elsewhere [6].

3. The wigging

As mentioned above, we consider N = 2, D = 4 Poincaré su-
pergravity minimally coupled to n Abelian vector multiplets; as
notation and conventions, we adopt the ones of [8]. The super-

1 For a treatment of the attractor mechanism [1] and marginal stability in ex-
tremal black hole solutions of these models, see e.g. [10–12], and references therein.
For an analysis of the duality orbits and related moduli spaces, cf. [13–15]. These
models have also been treated in [16], and more recently in [17].
symmetry transformations for fermionic fields are

δψAμ = ∇μεA − 1

4

(
∂i K λ̄iBεB − ∂̄ı̄ K λ̄ı̄

Bε
B)

ψAμ

+ (
A A

νB gμν + A′
A
νBγμν

)
εB

+ εAB T −
μνγ

νεB ,

δλi A = 1

4

(
∂ j K λ̄ jBεB − ∂̄ j̄ K λ̄

j̄
Bε

B)
λi A

− Γ i
jkλ̄

kBεBλ j A + i
(
∂μzi − λ̄iBψBμ

)
γ με A

+ Gi−
μνγ

μνεBεAB + Di ABεB , (2)

while bosonic fields transform as

δea
μ = −iψ̄Aμγ aε A − iψ̄ A

μγ aεA,

δAΛ
μ = 2L̄Λψ̄AμεBε

AB + 2LΛψ̄ A
μεBεAB

+ i
(

f Λ
i λ̄i AγμεBεAB + f̄ Λ

ı̄ λ̄ı̄
AγμεBε

AB)
,

δzi = λ̄i AεA, (3)

where the auxiliary fields A A
μB , A′

A
μB are defined as

AμB
A := − i

4
gk̄l

(
λ̄k̄

Aγ μλlB − δB
A λ̄k̄

Cγ μλlC )
,

A′μB
A := i

4
gk̄l

(
λ̄k̄

Aγ μλlB − 1

2
δB

A λ̄k̄
Cγ μλlC

)
, (4)

and the supercovariant field strength as

F̃ Λ
μν := FΛ

μν + LΛψ̄ A
μψ B

ν εAB − i f Λ
i λ̄i Aγ[νψ B

μ]εAB + h.c. (5)

From the Vielbein postulate, the N = 2 spin connection reads (cf.
e.g. [21])

ωab
μ = 1

2
ecμ

[
Ωabc − Ωbca − Ωcab] + K a

μ
b, (6)

where Ωabc : = eμaeνb(∂μec
ν − ∂νec

μ) and K a
μ

b := −iψ̄ [a
A γ b]ψ A

μ −
iψ̄ Aaγ bψAμ . For CP

n models, various quantities of special geome-
try [8] get simplified as follows:

T −
μν := 2i(ImN )ΛΣ LΣ F̃ Λ−

μν ,

T +
μν := 2i(ImN )ΛΣ L̄Σ F̃ Λ+

μν ,

Gi−
μν := −gi j̄ f̄ Γ

j̄
(ImN )Γ Λ F̃ Λ−

μν ,

G ı̄+
μν := −g ı̄ j f Γ

j (ImN )Γ Λ F̃ Λ+
μν ,

FΛ
μν := ∂[μ AΛ

ν],

∇εA := dεA − 1

4
γabω

ab ∧ εA + i

2
Q ∧ εA,

Q μ := − i

2

(
∂i K∂μzi − ∂̄ı̄ K∂μ z̄ı̄

)
,

Di AB = 0, (7)

where ωab is the spacetime spin connection, Q is the connection
of the U (1)R -line bundle, ωA

B := i
2 ωx(σx)A

B where ωx is the con-
nection of the (global, in this case) SU(2)R -bundle and σx are the
SU(2) Pauli matrices. Note also that ωA

B := εACεD BωC
D . Further-

more, the (anti)self-dual supercovariant field strength is defined as

FΛ±
μν := 1

2

(
FΛ

μν ± i

2
εμνρσFρσ |Λ

)
, (8)

and the same holds for F̃ Λ±
μν . Note that g is the determinant of the

spacetime metric.
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The following identities of the special geometry of CP
n are

used throughout:

f Λ
i = ∇i L

Λ :=
(

∂i + 1

2
∂i K

)
LΛ,

LΛ = e
K
2 XΛ, ∇i f Λ

j = 0,

∇i f̄ Λ

j̄
= gi j̄ L̄

Λ, ∇̄ı̄ LΛ = 0,

ImNΛΓ f Λ
i LΓ = ImNΛΓ f̄ Λ

ı̄ L̄Γ = 0. (9)

We now start with a purely bosonic background: the double-
extremal (1/2-)BPS black hole. For this solution, the near-horizon
conditions [1]

∂μzi = 0, Gi−
μν = 0, (10)

actually hold all along the scalar flow. In particular, the scalar fields
are constant for every value of the radial coordinate r.

In this framework, major simplifications take place in the com-
putations. At the first order, the unique non-trivial variation is
given by2

(
δ(1)ψAμ

)∣∣
d.e.

= ∇μεA + εAB T −
μνγ

νεB , (11)

which does not vanish because εA is an anti-Killing spinor [4,2,
5]. Moreover, the subscript “d.e.” denotes the evaluation on (10),
throughout. Exploiting the iteration procedure, we then find that
at the next order the bosonic fields are modified as follows:(
δ(2)ea

μ

)∣∣
d.e.

= −i
(
δ(1)ψ̄ A

μ

)
γ aεA + h.c.,(

δ(2) AΛ
μ

)∣∣
d.e.

= 2LΛ
(
δ(1)ψ̄ A

μ

)
εBεAB + h.c. (12)

At the third order, the only non-vanishing variations read(
δ(3)ψAμ

)∣∣
d.e.

= (
δ(2)∇μ

)
εA + (

δ(2)T −
μν

)
γ νεBεAB ,(

δ(3)λ̄i A)∣∣
d.e.

= −(
δ(2)Gi−

μν

)
ε̄Bε

ABγ μν, (13)

where(
δ(2)Gi−

μν

)∣∣
d.e.

= −gi j̄ f̄ Γ

j̄
ImNΓ Λ

(
δ(2) F̃ Λ−

μν

)
,(

δ(2) F̃ Λ
μν

)∣∣
d.e.

= (
δ(2)FΛ

μν

) + 2LΛ
(
δ(1)ψ̄ A

μ

)(
δ(1)ψ B

ν

)
εAB + h.c.,(

δ(2)FΛ
μν

)∣∣
d.e.

= ∇[μ
(
δ(2) AΛ

ν]
)
,(

δ(2)T −
μν

)∣∣
d.e.

= 2i ImNΓ ΛLΓ
(
δ(2) F̃ Λ−

μν

)
,(

δ(2)FΛ±
μν

)∣∣
d.e.

= 1

2

(
δ(2)FΛ

μν

) ± i

4

(
δ(2)εμνρσ

)
FΛ|ρσ

± i

4
εμνρσ

[
gαρ gβσ

(
δ(2)FΛ

αβ

)
+ 2

(
δ(2)gαρ

)
gβσFΛ

αβ

]
, (14)

and the same result is obtained for F̃ Λ±
μν .

4. Modification of the attractor mechanism

By proceeding further with the iteration, one finds that the
most relevant contribution to the variation takes place at the
fourth order, at which a non-vanishing contribution to the varia-
tion of the scalar fields is firstly observed. Thus, the scalar fields
get affected by the wigging at the fourth order in the anti-Killing
spinors, even on the simplest background, namely in the case of
double-extremal BPS black hole:

2 Note that from now on the r.h.s. is intended evaluated on the background (10).
(
δ(4) AΛ

μ

)∣∣
d.e.

= 2L̄Λ
(
δ(3)ψ̄Aμ

)
εBε

AB

+ i f Λ
i

(
δ(3)λ̄i A)

γμεBεAB + h.c.,(
δ(4)ea

μ

)∣∣
d.e.

= −i
(
δ(3)ψ̄ A

μ

)
γ aεA + h.c. (15)

By a long but straightforward algebra, the computation of the
fourth-order variation of the scalar fields can be computed to read:(
δ(4)zi)∣∣

d.e.
= (

δ(4)zi∇
)∣∣

d.e.
+ (

δ(4)zi
T

)∣∣
d.e.

,

where we separated two contributions: the one from the spinor
covariant derivative and the one from the graviphoton field-
strength(
δ(4)zi∇

)∣∣
d.e.

:= gi j̄ f̄ Γ

j̄
ImNΓ Λ

(
ε̄Cγ μνεD

)
εDC

×
{

1

4
R−

μνab LΛ
(
ε̄ Aγ abεB)

εAB

− 1

2
F ρσ |Λεabcd

[(∇με̄Aγ aε A)
eb
νec

ρed
σ

+ ea
μeν

ν

(∇ρ ε̄Aγ cε A)
ed
σ + h.c.

]
+ F Λ

αβεμνρ
β
(∇λε̄Aγ cε A + h.c.

)
gλ(ρeα)

c

}
, (16)

(
δ(4)zi

T

)∣∣
d.e.

:= gi j̄ f̄ Γ

j̄
ImNΓ Λ

(
ε̄Cγ μνεDεDC )

×
{

2LΛ
[
T −
ρ[ν

(∇μ]ε̄Aγ ρε A) + T −
ρ[ν

(∇μ]ε̄ Aγ ρεA
)

+ εAB T −
ρ[μT −

ν]σ
(
ε̄Aγ ρσ εB

)]−
− 1

2
F ρσ |Λερνωσ T −

λμ

[
εAB

(
ε̄ Aγ λωεB) + h.c.

]
+ 1

2
F Λ
ρσ εμν

σλT −
λω

[
εAB

(
ε̄ Aγ ρωεB) + h.c.

]}
,

(17)

where we defined

R−
μνab := 1

2

(
Rμνab − i

2
εμν

ρσ Rρσab

)
. (18)

Since(
δ(1)zi)∣∣

d.e.
= (

δ(2)zi)∣∣
d.e.

= (
δ(3)zi)∣∣

d.e.
= 0, (19)

it thus follows that the complete fermionic wig of the n complex
scalar fields zi in the background of a double-extremal 1/2-BPS
black hole in N = 2, D = 4 minimally coupled supergravity reads
(in absence of gauging and hypermultiplets):

zi
WIG

∣∣
d.e.

:= zi
(0)

∣∣
d.e.

+ 1

4!
(
δ(4)zi)∣∣

d.e.
�= zi

(0)

∣∣
d.e.

, (20)

where zi
(0)|d.e. denotes the “unwigged”, near-horizon value of the

scalar fields; according to the attractor mechanism [1], the latter
depends only on the electric and magnetic charges of the black
hole (for a detailed treatment, see [11], and references therein).

5. Axion-dilaton model

As an illustrative example, we analyze the simplest case within
minimally coupled N = 2 supergravity, namely the CP

1 model,
with only one vector multiplet (containing one complex scalar
field z) coupled to the gravity multiplet.

In this case, we find convenient to consider the symplectic
frame specified by the holomorphic prepotential
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F := −i X0 X1, (21)

which arises out by suitably truncating the N = 4 “pure” theory
(see e.g. the discussion in [20,12]), and it determines the following
Kähler potential (cf. e.g. [19]):

K = − ln
[
2(z + z̄)

]
, (22)

from which the metric function is derived:

g11̄ = (
g11̄)−1 = 1

(z + z̄)2
. (23)

In special coordinates, after a Kähler gauge-fixing (Λ = 0,1
throughout the present section):

XΛ = (1, z), (24)

and then one can derive the covariantly holomorphic symplectic
sections of special geometry:

LΛ := e
K
2 XΛ = 1√

2(z + z̄)
(1, z), (25)

MΛ := NΛΣ LΣ = −i
1√

2(z + z̄)
(z,1), (26)

and their Kähler-covariant derivatives

f Λ :=
(

∂z + 1

2
∂z K

)
LΛ = 1√

2(z + z̄)3/2
(−1, z̄) (27)

(note the suppression of the i-index in f Λ
i , due to the presence of

only one scalar field).
In a symplectic frame defined by a prepotential F , the symmet-

ric complex kinetic matrix of vector fields is defined as (see for
instance [18,22], and references therein)

NΛΣ := F̄ΛΣ − 2i T̄Λ T̄Σ

(
LΓ Im FΓ Ξ LΞ

)
, (28)

FΛΣ := ∂2 F

∂ XΛ∂ XΣ
, (29)

TΛ := −i
Im FΛΞ L̄Ξ

L̄Γ Im FΓ Σ L̄Σ
. (30)

In the case under consideration, the 2 × 2 kinetic vector matrix
reads

NΛΣ = −i diag

(
z,

1

z

)
, (31)

thus yielding

ImNΛΣ = − z + z̄

2
diag

(
1,

1

|z|2
)

, (32)

ReNΛΣ = z − z̄

2i
diag

(
1,− 1

|z|2
)

. (33)

5.1. Double-extremal black hole

We are now going to derive the explicit values for the various
fields in our configuration. We will be dealing with an asymp-
totically flat, static, spherically symmetric, dyonic 1/2-BPS double-
extremal black hole, with z constant for every value of the radial
coordinate r. Following the conventions of [19], we consider a dy-
onic black hole metric3

3 This metric is of Papetrou–Majumdar form, thus the radius of the event horizon
is located at r = rH = 0.
ds2 =
(

1 + M

r

)−2

dt2

−
(

1 + M

r

)2(
dr2 + r2 dθ2 + r2 sin2 θ dφ2), (34)

with gauge field strengths given by

FΛ =
(

1 + M

r

)−2 2Q Λ

r2
dt ∧ dr − 2PΛ sin θ dθ ∧ dφ, (35)

where Q Λ and PΛ are symplectic, z-dependent, real quantities,
defined by [19](

PΛ

Q Λ

)
= 1

2

(
pΛ

(ImN−1 ReN p)Λ − (ImN−1q)Λ

)
. (36)

As showed in the third reference of [1], in order to have a su-
persymmetric attractor solution one must require that Gi−

μν = 0 on
the horizon; such a requirement constrains the scalar z to be a
function only of the electric (qΛ) and magnetic (pΛ) charges of
the black hole. Starting from (22), it turns out that the value of
the constant scalar is fixed to be

z(0)
∣∣
d.e.

= q0 − ip1

q1 − ip0
= Q 1 − i P 1

Q 0 − i P 0

∣∣∣∣
d.e.

, (37)

where in the last step the inverse of (36), namely [19](
pΛ

qΛ

)
=

(
2PΛ

2 ReNΛΣ PΣ − 2 ImNΛΣ Q Σ

)
, (38)

has been exploited. Note that z(0)|d.e. given by (37) expresses the
value of the scalar field z at the zeroth order.

By setting z = z(0)|d.e. , one gets Gi−
μν = 0, and the BPS bound is

saturated [19]:

M2 = −2
[
ImNΓ Λ

(
Q Γ Q Λ + PΓ PΛ

)]
d.e.

= |Z |2d.e.

= q0q1 + p0 p1 = AH(0)

4
= SBH(0)

π
, (39)

where Z is the N = 2 central charge function:

Z := LΛqΛ − MΛpΛ, (40)

and AH(0) and SBH(0) respectively denote the horizon area and the
Bekenstein–Hawking entropy of the black hole at the zeroth order
(recall the comment at the end of Section 1).

In order for the scalar to be fixed at order n (in particular
n = 4), one has to require the vanishing of the supersymmetry
variation δ(n−2)Gi−

μν . As shown below, due to the presence of a
gauge field variation, this is true only up to n = 3.

5.2. Fourth order scalar variation

We now proceed to computing the fourth order variation of the
scalar field z in the double-extremal BPS axion-dilaton background
specified by (34), (35) and (37), as described in Section 5.1.

We start and recall the Minkowski–Killing spinors in spherical
coordinates:

εA =
[

cos
θ

2

(
sin

φ

2
14 + cos

φ

2
γ23

)

+ sin
θ

2

(
cos

φ

2
γ13 − sin

φ

2
γ12

)]
ζA, (41)

ε A =
[

cos
θ

2

(
sin

φ

2
14 + cos

φ

2
γ23

)

+ sin
θ

(
cos

φ
γ13 − sin

φ
γ12

)]
ζ A, (42)
2 2 2
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where ζ1 = (1+γ5)
2 1, ζ2 = (1+γ5)

2 2, ζ 1 = (1−γ5)
2 1, ζ 2 = (1−γ5)

2 2 and
1,2 are Majorana spinors defined as

1 = {
a1,a2,−a∗

2,−a∗
1

}
, 2 = {

b1,b2,−b∗
2,−b∗

1

}
, (43)

with a,b denoting constant complex Grassmannian numbers.
As mentioned above, the non-vanishing variation for the scalar

field z is induced by the correction that Gi−
μν does acquire at the

second order. In fact, one achieves the following result:(
δ(4)zi)∣∣

d.e.
= (

δ(3) ¯λi A
)∣∣

d.e.
εA = −(

δ(2)Gi−
μν

)
γ μν

∣∣
d.e.

ε̄BεAεAB ,

(44)

(cf. Section 3 for the explicit variation of the fields); we should
note that we exploited the special geometry identity (see e.g. [8])

ImNΛΣ f̄ Λ

j̄
L̄Σ = 0. (45)

5.3. Final result

By recalling the results (16) and (17), the value of the scalar
field at the fourth order (37) yields(
δ(4)z

)∣∣
d.e.

= (
δ(4)zT

)∣∣
d.e.

. (46)

It should be stressed that, upon acting with all vacuum super-
isometries as supersymmetry parameters, (δ(4)z)|d.e. acquires a de-
pendence also on the unbroken super-isometries. This redundance
can be eliminated by a gauge choice on the gravitino field, in order
to work with a “pure” anti-Killing spinor with 4 (complex) degrees
of freedom. In order to highlight their contribution, we redefine
the constant Minkowski–Killing spinor zero modes as follows:

A := a1 + ib1, B := b2 − ia2,

C := a∗
1 + ib∗

1, D := b∗
2 − ia∗

2. (47)

Such a redefinition allow us to work only with A, B, C and D , since
these are the only generators for the black hole wig itself (their
complex conjugates are the zero modes for the black hole Killing
spinors). Using these variables, we finally achieve the result

(
δ(4)z

)∣∣
d.e.

= M4

4(M + r)4

×
[

P 0 Q 1 − P 1 Q 0

(P 0 + i Q 0)2(Q 0 + i P 0)(P 1 − i Q 1)

]
d.e.

×Q sin2 φ sin2 θ (48)

= M4

(M + r)4

p0q0 − p1q1

(p0 + iq1)2(p0 − iq1)(q0 + ip1)

×Q sin2 φ sin2 θ, (49)

within the constraint q0q1 + p0 p1 > 0 imposed by the saturation
of the BPS bound (39). Note that we have introduced the “quadri-
linear” Q := ABC D , and Eqs. (36) and (37) have been used. Also,
for M = 0 the result (49) vanishes, as expected.

By evaluating the expression (49) on the event horizon r = rH =
0 of the bosonic solution (34) (denoted by the subscript “d.e.h.”;
recall the comment at the end of Section 1), one obtains

(
δ(4)z

)∣∣
d.e.h.

= p0q0 − p1q1

(p0 + iq1)2(p0 − iq1)(q0 + ip1)
Q sin2 φ sin2 θ.

(50)

As resulting from (50) and (20), in the near-horizon background
of a double-extremal BPS axion-dilaton black hole, upon perform-
ing (the near-horizon limit of) a finite supersymmetry transforma-
tion, the axion-dilaton z is not constant any more, but acquires a
dependence on the angles φ and θ .

Nevertheless, for M �= 0, one can single out at least three pecu-
liar charge configurations in which z does remain fixed, and given
by (37), i.e. in which4 (δ(4)z)|d.e. = 0 = (δ(4)z)|d.e.h.:

I. p0 = p1 = 0 	⇒ z(0)
∣∣
d.e.

= q0/q1;
II. q0 = q1 = 0 	⇒ z(0)

∣∣
d.e.

= p1/p0;
III. p1/p0 = q1/q0.

⎫⎪⎬
⎪⎭

⇒ zWIG
∣∣
d.e.

= zWIG
∣∣
d.e.h.

= z(0)
∣∣
d.e.h.

= z(0)
∣∣
d.e.

(51)

6. Conclusions

Eq. (20), with (δ(4)zi)|d.e. given by the results (48)–(49) and
(17), expresses how the value of the axion-dilaton gets modified by
the fermionic wig along the radial flow in the background of a bosonic
BPS double extremal black hole of N = 2 supergravity.

In particular, its near-horizon limit, in which the expressions
(48)–(49) are replaced by (50), yields that the attractor mechanism
gets modified by the fermionic wig. It is therefore the first evidence
– in the simplest case provided by the (double extremal) axion-
dilaton black hole, of what we dub the “fermionic-wigged” attractor
mechanism: the fermionic-wigged value, depending on the “quadri-
linear” Q as well as on the angles φ and θ , of the scalar fields in
the near-horizon geometry of the double-extremal 1/2-BPS black
hole is different from the corresponding, purely charge–dependent,
horizon attractor value at the zeroth order.

We would like to stress once again that we adopted the ap-
proximation of computing the fermionic wig by performing a per-
turbation of the unwigged, purely bosonic (double) extremal BPS
extremal black hole solution; thus, within this approximation, we
consider quantities like the radius of the event horizon unchanged.

We leave to further future work [6] the complete analysis of
the fully-backreacted wigged black hole solution, also including
the study of its thermodynamical properties, and the computation
of its Bekenstein–Hawking entropy; this may be done also in the
non-supersymmetric (non-BPS) case.

Our analysis may also be applied to higher dimensions, as well
as to extended supergravities.
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