21 research outputs found
Rho GTPase function in flies: insights from a developmental and organismal perspective.
Morphogenesis is a key event in the development of a multicellular organism and is reliant on coordinated transcriptional and signal transduction events. To establish the segmented body plan that underlies much of metazoan development, individual cells and groups of cells must respond to exogenous signals with complex movements and shape changes. One class of proteins that plays a pivotal role in the interpretation of extracellular cues into cellular behavior is the Rho family of small GTPases. These molecular switches are essential components of a growing number of signaling pathways, many of which regulate actin cytoskeletal remodeling. Much of our understanding of Rho biology has come from work done in cell culture. More recently, the fruit fly Drosophila melanogaster has emerged as an excellent genetic system for the study of these proteins in a developmental and organismal context. Studies in flies have greatly enhanced our understanding of pathways involving Rho GTPases and their roles in development
Numerical modeling of vertical stratification of Lake Shira in summer
A one-dimensional numerical model and a two-dimensional numerical model of the hydrodynamic and thermal structure of Lake Shira during summer have been developed, with several original physical and numerical features. These models are well suited to simulate the formation and dynamics of vertical stratification and provide a basis for an ecological water-quality model of the lake. They allow for the quantification of the vertical mixing processes that govern not only the thermal structure but also the nutrient exchange, and more generally, the exchange of dissolved and particulate matter between different parts of the lake. The outcome of the calculations has been compared with the field data on vertical temperature and salinity distributions in Lake Shira. Lake Shira is meromictic and exhibits very stable annual stratification. The stratification is so stable because of the high salinity of the water. If the water in Lake Shira were fresh and other parameters (depth, volume, and meteorology) were the same, as now, the lake would be mixed in autumn. Using the newly developed models and using common meteorological parameters, we conclude that Lake Shira will remain stratified in autumn as long as the average salinity is higher than 3‰.
Some generalizations based on stratification and vertical mixing in meromictic Lake Shira, Russia, in the period 2002–2009
In a brackish, temperate, 24-m-deep Lake Shira, the profiles of salinity, temperature, oxygen and sulfide concentrations were measured on a seasonal basis from 2002 to 2009. The lake was shown to be meromictic with autumnal overturn restricted to mixolimnion. The depth of mixolimnion and position of oxic–anoxic interface varied annually. The spring mixing processes contribute to the formation of mixolimnion in autumn. The exceptionally windy spring of 2007 caused the deepening of mixolimnion in the winter of 2008. The winter position of oxic–anoxic interface was affected by the position of lower boundary of mixolimnion in all winters. The salinity in the winter mixolimnion increased compared with the autumn because of freezing out of salts from the upper water layers meters during ice formation and their dissolution in water below. The profiles of salinity and temperature were simulated by the mathematical 1-D model of temperature and salinity conditions taking into account ice formation. The simulated profiles generally coincided with the measured ones. The coincidence implies that simplified one-dimensional model can be applied to roughly describe salinity and density profiles and mixing behavior of Lake Shira.
A one-dimensional model of vertical stratification of Lake Shira focussed on winter conditions and ice cover
In meromictic lakes such as Lake Shira, horizontal inhomogeneity is small in comparison with vertical gradients. To determine the vertical distribution of temperature, salinity, and density of water in a deep zone of a Lake Shira, or other saline lakes, a one-dimensional (in vertical direction) mathematical model is presented. A special feature of this model is that it takes into account the process of ice formation. The model of ice formation is based on the one-phase Stefan problem with the linear temperature distribution in the solid phase. A convective mixed layer is formed under an ice cover due to salt extraction in the ice formation process. To obtain analytical solutions for the vertical distribution of temperature, salinity, and density of water, we use a scheme of vertical structure in the form of several layers. In spring, the ice melts as top and bottom. These processes are taken into account in the model. The calculated profiles of salinity and temperature of Shira Lake are in good agreement with field measurement data for each season. Additionally, we focussed on the redox zone, which is the zone in which the aerobic layers of a water column meet the anaerobic ones. Hyperactivity of plankton communities is observed in this zone in lakes with hydrogen sulphide monimolimnion, and Lake Shira is among them. The location of the redox zone in the lake, which is estimated from field measurements, coincides with a sharp increase in density (the pycnocline) during autumn and winter. During spring and summer, the redox zone is deeper than the pycnocline. The location of pycnocline calculated with the hydro physical model is in good agreement with field measurement data.
Annihilation of low energy antiprotons in silicon
The goal of the AEIS experiment at the Antiproton Decelerator (AD) at CERN, is to measure directly the Earth's gravitational acceleration on antimatter. To achieve this goal, the AEIS collaboration will produce a pulsed, cold (100 mK) antihydrogen beam with a velocity of a few 100 m/s and measure the magnitude of the vertical deflection of the beam from a straight path. The final position of the falling antihydrogen will be detected by a position sensitive detector. This detector will consist of an active silicon part, where the annihilations take place, followed by an emulsion part. Together, they allow to achieve 1 precision on the measurement of with about 600 reconstructed and time tagged annihilations. We present here, to the best of our knowledge, the first direct measurement of antiproton annihilation in a segmented silicon sensor, the first step towards designing a position sensitive silicon detector for the AEIS experiment. We also present a first comparison with Monte Carlo simulations (GEANT4) for antiproton energies below 5 MeVThe goal of the AEIS experiment at the Antiproton Decelerator (AD) at CERN, is to measure directly the Earth's gravitational acceleration on antimatter. To achieve this goal, the AEIS collaboration will produce a pulsed, cold (100 mK) antihydrogen beam with a velocity of a few 100 m/s and measure the magnitude of the vertical deflection of the beam from a straight path. The final position of the falling antihydrogen will be detected by a position sensitive detector. This detector will consist of an active silicon part, where the annihilations take place, followed by an emulsion part. Together, they allow to achieve 1 precision on the measurement of with about 600 reconstructed and time tagged annihilations. We present here, to the best of our knowledge, the first direct measurement of antiproton annihilation in a segmented silicon sensor, the first step towards designing a position sensitive silicon detector for the AEIS experiment. We also present a first comparison with Monte Carlo simulations (GEANT4) for antiproton energies below 5 Me
葡萄柚果實發育後期植株營養調查研究
本試驗目的調查在葡萄柚發育最後四個月,葉內無機養分濃度。由於葉齡逐漸增加情形下,葉內鎂及鉀濃度降低,鈣及鐵濃度增加,氮,磷,錳,鋅及銅濃度有稍減趨勢。The mineral nutrients in the late fruit developed stage of grapefruit leaves over 4 monthes are reported here.
Concentration of magnesiun and potassium tended to decrease with the age of leaves, whereas the concentration of calcium and iron increased until mid winter. Nitrogen, phosphorus manganese, copper and zinc concentration decreased slightly during the fruit developed stage
Annihilation of Low Energy Antiprotons in Silicon Sensors
The aim of the AEg̅IS experiment is to measure the gravitational acceleration for anti-hydrogen in the Earth's gravitational field, thus testing the Weak Equivalence Principle, which states that all bodies fall with the same acceleration independent of their mass and composition. AEg̅IS will make use of a gravity module which includes a silicon detector, in order to measure the deflection of anti-hydrogen from a straight path due to the Earth's gravitational field, by detecting the annihilation position on its surface. A position resolution better than 10 μm is required to determine the gravitational acceleration with a precision better than 10%. The work presented here is part of a study of different silicon sensor technologies to realise a silicon anti-hydrogen detector for the AEg̅IS experiment at CERN. We here focus on the study of a 3D pixel sensor with FE-I4 readout, originally designed for the ATLAS detector at the LHC, and compare it to a previous monolithic planar detector studied, the MIMOTERA. The direct annihilation of low energy anti-protons (~ 100 keV) takes place in the first layers and we show that the charged annihilation products (pions and nuclear fragments) can be detected by such a sensor. The present study aims at understanding the signature of an annihilation event in a 3D silicon sensor, in order to assess the accuracy that can be achieved by such a sensor in the reconstruction of the position of annihilation, when the same happens directly on the detector surface. We also present a comparison between experimental data and GEANT4 simulations and previous data obtained with a silicon imaging detector. These results are being used to determine the geometrical and process parameters to be adopted by the silicon annihilation detector to be installed in AEg̅IS
Annihilation of low energy antiprotons in silicon sensors
The aim of the AEgIS experiment is to measure the gravitational acceleration for anti-hydrogen in the Earth's gravitational field, thus testing the Weak Equivalence Principle, which states that all bodies fall with the same acceleration independent of their mass and composition. AEgIS will make use of a gravity module which includes a silicon detector, in order to measure the deflection of anti-hydrogen from a straight path due to the Earth's gravitational field, by detecting the annihilation position on its surface. A position resolution better than 10 \u3bcm is required to determine the gravitational acceleration with a precision better than 10%. The work presented here is part of a study of different silicon sensor technologies to realise a silicon anti-hydrogen detector for the AEgIS experiment at CERN. We here focus on the study of a 3D pixel sensor with FE-I4 readout, originally designed for the ATLAS detector at the LHC, and compare it to a previous monolithic planar detector studied, the MIMOTERA. The direct annihilation of low energy anti-protons ( 3c 100 keV) takes place in the first layers and we show that the charged annihilation products (pions and nuclear fragments) can be detected by such a sensor. The present study aims at understanding the signature of an annihilation event in a 3D silicon sensor, in order to assess the accuracy that can be achieved by such a sensor in the reconstruction of the position of annihilation, when the same happens directly on the detector surface. We also present a comparison between experimental data and GEANT4 simulations and previous data obtained with a silicon imaging detector. These results are being used to determine the geometrical and process parameters to be adopted by the silicon annihilation detector to be installed in AEgIS. \ua9 2013 IEEE
Detection of low energy antiproton annihilations in a segmented silicon detector
The goal of the AEbar gIS experiment at the Antiproton Decelerator (AD) at CERN, is to measure directly the Earth's gravitational acceleration on antimatter by measuring the free fall of a pulsed, cold antihydrogen beam. The final position of the falling antihydrogen will be detected by a position sensitive detector. This detector will consist of an active silicon part, where the annihilations take place, followed by an emulsion part. Together, they allow to achieve 1% precision on the measurement of bar g with about 600 reconstructed and time tagged annihilations. We present here the prospects for the development of the AEbar gIS silicon position sentive detector and the results from the first beam tests on a monolithic silicon pixel sensor, along with a comparison to Monte Carlo simulations
Investigation of silicon sensors for their use as antiproton annihilation detectors
International audienc