120 research outputs found

    A new look at the cosmic ray positron fraction

    Get PDF
    The positron fraction in cosmic rays was found to be a steadily increasing in function of energy, above \sim 10 GeV. This behaviour contradicts standard astrophysical mechanisms, in which positrons are secondary particles, produced in the interactions of primary cosmic rays during the propagation in the interstellar medium. The observed anomaly in the positron fraction triggered a lot of excitement, as it could be interpreted as an indirect signature of the presence of dark matter species in the Galaxy. Alternatively, it could be produced by nearby astrophysical sources, such as pulsars. Both hypotheses are probed in this work in light of the latest AMS-02 positron fraction measurements. The transport of the primary and secondary positrons in the Galaxy is described using a semi-analytic two-zone model. MicrOMEGAs is used to model the positron flux generated by dark matter species. The description of the positron fraction from astrophysical sources is based on the pulsar observations included in the ATNF catalogue. We find that the mass of the favoured dark matter candidates is always larger than 500 GeV. The only dark matter species that fulfils the numerous gamma ray and cosmic microwave background bounds is a particle annihilating into four leptons through a light scalar or vector mediator, with a mixture of tau (75%) and electron (25%) channels, and a mass between 0.5 and 1 TeV. The positron anomaly can also be explained by a single astrophysical source and a list of five pulsars from the ATNF catalogue is given. Those results are obtained with the cosmic ray transport parameters that best fit the B/C ratio. Uncertainties in the propagation parameters turn out to be very significant. In the WIMP annihilation cross section to mass plane for instance, they overshadow the error contours derived from the positron data.Comment: 20 pages, 16 figures, accepted for publication in A&A, corresponds to published versio

    A Fixed-Target ExpeRiment at the LHC (AFTER@LHC) : luminosities, target polarisation and a selection of physics studies

    Full text link
    We report on a future multi-purpose fixed-target experiment with the proton or lead ion LHC beams extracted by a bent crystal. The multi-TeV LHC beams allow for the most energetic fixed-target experiments ever performed. Such an experiment, tentatively named AFTER for "A Fixed-Target ExperRiment", gives access to new domains of particle and nuclear physics complementing that of collider experiments, in particular at RHIC and at the EIC projects. The instantaneous luminosity at AFTER using typical targets surpasses that of RHIC by more than 3 orders of magnitude. Beam extraction by a bent crystal offers an ideal way to obtain a clean and very collimated high-energy beam, without decreasing the performance of the LHC. The fixed-target mode also has the advantage of allowing for spin measurements with a polarised target and for an access over the full backward rapidity domain up to xF ~ - 1. Here, we elaborate on the reachable luminosities, the target polarisation and a selection of measurements with hydrogen and deuterium targets.Comment: 6 pages. Proceedings of the Sixth International Conference on Quarks and Nuclear Physics QNP2012 (16-20 April 2012, Ecole Polytechnique, Palaiseau,France

    Prospectives for A Fixed-Target ExpeRiment at the LHC: AFTER@LHC

    Full text link
    We argue that the concept of a multi-purpose fixed-target experiment with the proton or lead-ion LHC beams extracted by a bent crystal would offer a number of ground-breaking precision-physics opportunities. The multi-TeV LHC beams will allow for the most energetic fixed-target experiments ever performed. The fixed-target mode has the advantage of allowing for high luminosities, spin measurements with a polarised target, and access over the full backward rapidity domain --uncharted until now-- up to x_F ~ -1.Comment: 6 pages, 1 table, LaTeX. Proceedings of the 36th International Conference on High Energy Physics (ICHEP2012), 4-11 July 2012, Melbourne, Australi

    Spin physics at A Fixed-Target ExpeRiment at the LHC (AFTER@LHC)

    Full text link
    We outline the opportunities for spin physics which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton LHC beam extracted by a bent crystal. In particular, we focus on the study of single transverse spin asymetries with the polarisation of the target.Comment: Contributed to the 20th International Spin Physics Symposium, SPIN2012, 17-22 September 2012, Dubna, Russia, 4 pages, LaTe

    Holographic renormalization and supersymmetry

    Get PDF
    Holographic renormalization is a systematic procedure for regulating divergences in observables in asymptotically locally AdS spacetimes. For dual boundary field theories which are supersymmetric it is natural to ask whether this defines a supersymmetric renormalization scheme. Recent results in localization have brought this question into sharp focus: rigid supersymmetry on a curved boundary requires specific geometric structures, and general arguments imply that BPS observables, such as the partition function, are invariant under certain deformations of these structures. One can then ask if the dual holographic observables are similarly invariant. We study this question in minimal N = 2 gauged supergravity in four and five dimensions. In four dimensions we show that holographic renormalization precisely reproduces the expected field theory results. In five dimensions we find that no choice of standard holographic counterterms is compatible with supersymmetry, which leads us to introduce novel finite boundary terms. For a class of solutions satisfying certain topological assumptions we provide some independent tests of these new boundary terms, in particular showing that they reproduce the expected VEVs of conserved charges.Comment: 70 pages; corrected typo

    PMm2: large photomultipliers and innovative electronics for the next-generation neutrino experiments

    Full text link
    The next generation of proton decay and neutrino experiments, the post-SuperKamiokande detectors as those that will take place in megaton size water tanks, will require very large surfaces of photodetection and a large volume of data. Even with large hemispherical photomultiplier tubes, the expected number of channels should reach hundreds of thousands. A funded R&D program to implement a solution is presented here. The very large surface of photodetection is segmented in macro pixels made of 16 hemispherical (12 inches) photomultiplier tubes connected to an autonomous front-end which works on a triggerless data acquisition mode. The expected data transmission rate is 5 Mb/s per cable, which can be achieved with existing techniques. This architecture allows to reduce considerably the cost and facilitate the industrialization. This document presents the simulations and measurements which define the requirements for the photomultipliers and the electronics. A proto-type of front-end electronics was successfully tested with 16 photomultiplier tubes supplied by a single high voltage, validating the built-in gain adjustment and the calibration principle. The first tests and calculations on the photomultiplier glass led to the study of a new package optimized for a 10 bar pressure in order to sustain the high underwater pressure.Comment: 1 pdf file, 4 pages, 4 figures, NDIP08, submitted to Nucl. Instr. and Meth. Phys. Res.

    Spin physics and TMD studies at A Fixed-Target ExpeRiment at the LHC (AFTER@LHC)

    Full text link
    We report on the opportunities for spin physics and Transverse-Momentum Dependent distribution (TMD) studies at a future multi-purpose fixed-target experiment using the proton or lead ion LHC beams extracted by a bent crystal. The LHC multi-TeV beams allow for the most energetic fixed-target experiments ever performed, opening new domains of particle and nuclear physics and complementing that of collider physics, in particular that of RHIC and the EIC projects. The luminosity achievable with AFTER@LHC using typical targets would surpass that of RHIC by more that 3 orders of magnitude in a similar energy region. In unpolarised proton-proton collisions, AFTER@LHC allows for measurements of TMDs such as the Boer-Mulders quark distributions, the distribution of unpolarised and linearly polarised gluons in unpolarised protons. Using the polarisation of hydrogen and nuclear targets, one can measure transverse single-spin asymmetries of quark and gluon sensitive probes, such as, respectively, Drell-Yan pair and quarkonium production. The fixed-target mode has the advantage to allow for measurements in the target-rapidity region, namely at large x^uparrow in the polarised nucleon. Overall, this allows for an ambitious spin program which we outline here.Comment: 6 pages, 4 figures, 1 table, LaTeX. Proceedings of the Fourth International Workshop on Transverse Polarisation Phenomena in Hard Processes (Transversity 2014), 9-13 June, 2013, Chia, Ital

    The High-Acceptance Dielectron Spectrometer HADES

    Get PDF
    HADES is a versatile magnetic spectrometer aimed at studying dielectron production in pion, proton and heavy-ion induced collisions. Its main features include a ring imaging gas Cherenkov detector for electron-hadron discrimination, a tracking system consisting of a set of 6 superconducting coils producing a toroidal field and drift chambers and a multiplicity and electron trigger array for additional electron-hadron discrimination and event characterization. A two-stage trigger system enhances events containing electrons. The physics program is focused on the investigation of hadron properties in nuclei and in the hot and dense hadronic matter. The detector system is characterized by an 85% azimuthal coverage over a polar angle interval from 18 to 85 degree, a single electron efficiency of 50% and a vector meson mass resolution of 2.5%. Identification of pions, kaons and protons is achieved combining time-of-flight and energy loss measurements over a large momentum range. This paper describes the main features and the performance of the detector system

    Supercurrent anomalies in 4d SCFTs

    Get PDF
    We use holographic renormalization of minimal \mathcalN=2 gauged supergravity in order to derive the general form of the quantum Ward identities for 3d \mathcalN=2 and 4d \mathcalN=1 superconformal theories on general curved backgrounds, including an arbitrary fermionic source for the supercurrent. The Ward identities for 4d \mathcalN=1 theories contain both bosonic and fermionic global anomalies, which we determine explicitly up to quadratic order in the supercurrent source. The Ward identities we derive apply to any superconformal theory, independently of whether it admits a holographic dual, except for the specific values of the aa and cc anomaly coefficients, which are equal due to our starting point of a two-derivative bulk supergravity theory. In the case of 4d \mathcalN=1 superconformal theories, we show that the fermionic anomalies lead to an anomalous transformation of the supercurrent under rigid supersymmetry on backgrounds admitting Killing spinors, even if all anomalies are numerically zero on such backgrounds. The anomalous transformation of the supercurrent under rigid supersymmetry leads to an obstruction to the QQ-exactness of the stress tensor in supersymmetric vacua, and may have implications for the applicability of localization techniques. We use this obstruction to the QQ-exactness of the stress tensor in order to resolve a number of apparent paradoxes relating to the supersymmetric Casimir energy, the BPS condition for supsersymmetric vacua, and the compatibility of holographic renormalization with supersymmetry, that were presented in the literature
    corecore